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Deformation o Linear Ordinary
Differential Equations. I

By Michio JIMB0 and Tetsuji MIWA
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by KSsaku YOSlDA, M. . n., April 12, 1980)

In this article we report on the general theory of isomonodromic
deformations 2or a system of linear ordinary differential equations (1),
having irregular singularities o arbitrary rank. A general scheme
2or such deformations was constructed by L. Schlesinger [1] or equa-
tions with regular singularities, and was recently extended by K. Ueno
[2], B. Klares [10] to the case admitting irregular singularities. The
main results o the present note are (i) proof of complete integrability
o the nonlinear deformation equations ( 2-3), and (ii) introduction
of the notion of r function ( 4).

Details o this and the forthcoming note II will be published else-
where.

We wish to thank Pro. M. Sato, Drs. K. Okamoto, K. Ueno and
also Pros. H. Flaschka, J. L. Verdier or many inwluable discussions.

1. Let a, ., a, a be distinct points on P. We consider a
system o linear ordinary differential equations with rational coeffi-
cients

( 1 ) dY -A(x)Y, A(x) A,_x-dx o (x: +

where A,_ are m m constant matrices. We set A0= A0. The

leading coefficients A,_ at x=a are assumed to be diagonalized as
=()T() ()- (,=1, n,)(2) A_ __

() diagonal with eigenvalues mutually distinct (i r> 1) orr

distinct modulo integers (if r=0).
T() and choose G() 1 Along withIn the sequel we assume A,_= _

(1) we consider equivalent systems with diagonalized leading term at

dY(’)

_A()(x)y() A()(x)=G()-A(x)G()(3)
dx

Equation (1) is specified by the following data
T() G() (,=1,... n);A A(4) a, Ao, ...,A +, ---r, -, -.

We denote by the affine manifold o "singularity data" (4).
Equation (3) has a unique formal solution o2 the following orm

([5][6])
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(5)

where
1( 6 ) z=x-a (:# oo), (=
X

We call T0() the exponent of formal monodromy at x=a. The
coefficients Y(), T() are determined from

A()(x)dx /dz(). Let

be the Laurent expansion at x=a. We set )(x)=F()(z)D)(z),
D) 1, and F) diagonalF()(z) ) D()(z) Di)z, F)= 1,

k=O k=O

free, D) diagonal or k1; then the following recursion relations
hold (with A() T_r)

( 7 ) IFi), T_] -.-_ k--j--r+%--r+jk--j

j=O

Here we have set T) =0 (k 1) and

( 8 ) I) 0 (k <_ 0), kD) ._()() (k_> 1).
jl

For instance

[F), -r=’’-r+ ---r+,

[F), T] A+F)+A F)T+2--

)kk=l
-r+k r+l-k

2D) D) ()

=I
-ry+ r+2-

D

where (X)=(X.) denotes the digonM prt of mtrix X(X).
Ountities Y>, T>, F> and D) re rtionl functions

ext choose set of sectors. > c(> in the univers1 cover-+I

ing manifold of =P (a, ",an, }, such that I)o+, and

(3>)= V-{a}. Here " is a projection and V is a small
=1

neighborhood of a. For example we choose

( 9 ) u(,)= x V, u(l- 1) 6arg z
with0 small. For r=0 set 3)=V-{a}.

It is known that there exists a unique actual solution Y)(x) of (3),
holomorphic and invertible in () having the asymptotic expansion

(10) Y,i)(x) ()(x)e’’ () in
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The Stokes multipliers S) are defined to be the constant matrices
satisfying
(11) Y:21(x) v()(,.q() l= 1, k.
Since Y(x) and G(Y(x) satisfy the same equation (1), the connec-
tion matrices C(’ are defined through
(12) Y)(x)=G()Y(x)C(’, ,= 1, ..., n, (C() 1).
The monodromy matrix for Y(x) at a is given by
(13) Y(x)I, Y(x)M,

2. Now we are concerned with a family {Y(x, t)} of unctions
parametrized by some t e C, such that the monodromy property is
preserved under the variation of parameters in the following sense"

(14) The Stokes multipliers S), connection matrices C) and the ex-
ponents of ormal monodromy T) are independent o t.

In particular the monodromy matrices M are also invariant by (13).
Following the scheme developed by Schlesinger [1] and Ueno [2], it is
shown that a necessary and sufficient condition for (14) is expressed in
terms of a system of total differential equations with respect to t; or
Y)(x) it is linear
(15) dY)=9()Y (,=1, ..., n, ),
and or the coefficient matrices it is non-linear

(16) dA 39=+[9), A()]
3x

dG() =@()G().

Here d denotes, the exterior differentiation with respect to the para-
meters t, and 9)=9)(x), 0) are matrices o 1-orms calculated rom
A(x), G a.s follows. First we define matrices ) of 1-forms through

?()(x)d’T()(x). ?()(x)-=
k= -r-I

(17)

with

(S)

For ,=, -r-() =0 and the second term.o (18) is absent. Explicitly
we have (T(2=O if kr)

(19) m() --_() da

kl+’"+ks=k’-k (--5 ----k’+

(,=1, ...,n, lkgr+l)
dT(0
(- (-,

(0).
In (20) dTk/(-) is omitted if =0. In erms of , 9( and 0
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are given by
r+l 1 r

(21)
= = (x--a) =0

(22)
r

(23)
k=0

.. = (a--a,)
The system (16) together with d9( =9() guarantees the integrability
of (1)+(15). It is shown (cf. (29)) that d9( =9() is a consequence of
(16), and that there is a canonical choice of deformation parameters
(see (27)’ below).. Actually (16) contains redundancy and is reducible to a smaller
set of equations. We set

(24) ()(x) dA((x) [9((x), A((x)].
dx

It is shown that the Laurent expansion of (24) at a has the form

(25) ()
k=--r+l

E()= Ei(-a,)- ().

Let denote the ideal of differential forms on generated by the fol-
lowing 1-forms
(26)

( (dG
It is easy to see that the totality of following quantities. (27)’+(27)"
(regarded as rational functions on ) constitute a coordinate system
o "(27)’ a, ...,a;

_
(27)"

(A))., (G()). (,= 1, ..., n; all a, fl).
() appearing in theHere t() are the entries of the diagonal matrix
__

exponential (5). Note that the l-forms (26) are of the orm dy
-Xf(x, y)dx where x (resp. y) signifies the coordinate (27)’ (resp.
(27)").

The following hold.
Theorem 1. All the coecients of the rational function (24) be-

long to the ideal
Theorem 2. The ideal is closed" dc, where d denotes the

exterior dierentiation on the manifold
By Frobenius’ theorem the system =0 is then completely inte-

grable. In conclusion, the deformation equations (16) are equivalent
to a completely integrable Pfaffian system ((26) set equal to 0), whose
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independent variables and the unknown functions are chosen to be (27)’
and (27)", respectively.

In the course of the proof of Theorems 1, 2, we find that the follow-
ing also belog to 5.
(28) d() + ()d’T
(29) d()-() (= 1, ., n, ), dO()-0() @= 1, ., n)
(30) dT) (,= 1, ., n, ).
In particular (28) gives an infinite system of nonlinear differential
equations among Y)’s. For instance the differential d() involving
d’T() is given by

kl+ +ks=k

(k=l, 2, ...).
By construction the singularities of (the coefficients of) the defor-

mation equations are confined to
(32) a, a for some

t() =t() for someafl, with r>lra r
We expect that the deformation equations, are "of Painlev type",
namely"

Conjecture 1. Aside from the fixed critical varieties (32), a
general solution to (16) can have at most poles.

4. To each solution of the deformation equations., there is canoni-
cally associated a closed 1-form. We set

(,)
(33) w=- Restrace ()(x)-: d’T()(x)dx.

,=,.-.,n, z=a OX

Here he residue of a formal Lauren series, f(z-a)dz resp.

fz-dz is defined o be f_ (rest. --f). In erms of g (gg) reads

() =+...++,

=trace Z)

(for ,= the second term is omitted)

where Z)= Y), Z)=y)_ 1

1 y()

k s=l k+...
kl ,ks

Theorem 3. dweS.
Hence to each solution of (16) there exists a function r, unique up

to a multiplicative constant, such that (cf. [7] [8])
(36) w d log r.
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We conjecture that this r function is free form movable poles.
Conjecture 2. The r function is holomorphic everywhere on the

universal covering manifold of C-{the fixed critical varieties (32)}.
Here N=n+m , r denotes the number of independent variables

=l n,oo

(27)’.
Conjectures 1, 2 are known to be true in the case where (16)re-

duces to the Painlev equations. (c. [9]).
Remark (cf. [10]). If we fix T(:’s and vary a, ..., a only, then

the deformation equations (16) and the 1-form (33) reduce respectively
to

(16)’ dA,_=

E [A,_,

gA,_ [A,_, ,__

() =o (a--ae)+ =1

1 ( )(33)’

trace A,_A,_a;+-da.
=1
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