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Ultradifferentiability of Solutions of Ordinary
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Department of Mathematics, University of Tokyo

(Communicated by KSsaku YOSIDA, M. J. A., April 12, 1980)

Let M, p-0, 1, 2, ..., be a sequence of positive numbers. An in-
finitely differentiable function f on an open set/2 in R is said to be an
ultradifferentiable function of class {M} (resp. of class (M)) if or
each compact set K in /2 there are constants h and C (resp. and 2or
each h0 there is a constant C) such that

sup ID"f(x)l=Chl"lMl,1, I1=0, 1, 2,

We assume that M satisfies the ollowing conditions"
(1) M0=M=I;
( 2 ) (M/q !)/-<(M/p .t)/-) 2<qp,
and furthermore in case of class (M)
(3) p (ij (i)

p=l, 2,...,

and
(4) M/(pM_I)-c as p-c.

We consider the initial value problem of ordinary differential
equation

(5) I-dt--f(t’x)’
Ix(O) =y,

where f(t,x)=(fl,..., fn) is an n-tuple o unctions defined on
(--T,T)9 with a TO and an open set /2 in R. We assume the
Lipschitz condition in x. Then for each relatively compact open sub-
set 9 of/2 there is. a 0T=T such that (5) has for each y e 9 a unique
solution x= x(t, y) on the interval (-T, T).

Our main result is. the following
Theorem. If all components of f(t, x) are ultradifferentiable

functions of class {Mp} (resp. of class (Mp)) on (- T, T) [2, then the
components of the solution x(t, y)are also ultradifferentiable functions
of class {M} (resp. of class (Mp)) on (-TI, T)

Hereafter we denote by either {Mp} or (M). The theorem is
proved in two steps.

Proposition 1. If f(t, x)is ultradifferentiable of class only in
x but uniformly in t, then x(t, y) is ultradifferentiable of class in y
uniformly in t.
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(8)

Lemma 1.

satisfies

The proof in the case of class (M) is reduced to the case of class
{M} by Lemma 6 of [2]. Therefore we may restrict ourselves to the
latter case.

We employ the method of Leray-Ohya [3] when they proved the
ultradifferentiability of the Gevrey class p !} for solutions of hyper-
bolic equations.

Let

r(t, X)= rp(t)xp
=0

be a formal power series in X with coefficients F(t) which are func-
tions in t. We write
( 6 f(t, x) F(t, X), t e I,

if every component f of f satisfies
[Df(t, x)l<_F.(t), x e 9, ]al=0, 1, 2, ...,

for all t e I. Let

q(t, Y) q(t) yq>0
q=0

be another formal power series in Y. Then we define

(t, (t, Y))=5=0 F;(,t)(n(b(t, Y)--(t, 0)))’.

If x(t, y) is an n-tuple of functions on I (2, with values in t9 such
that
( 7 ) x(t, y)(t, Y), t e I,

and if (6) holds, then we have
f(t, x(t, y)) F(t, (t, Y)) t e I.

Suppose that (6) holds for I=[0, T]. If (t, Y)

[ a(t, Y) V
(9) ------ (t, (t, Y)), t e I,

(0, Y) >> Y
then the solution x(t, y) of (5) is ma]orized as
(10) x(t, y)<< (t, Y), t e I.

Proof. The solution x(t, y) is obtained as the limit of Picard’s
approximation"

Xo(t, y)=y;

x+(t, y)=Y+fi f(s,x(s, y))ds.

Clearly we have
Xo(t, y)=y<<Y<<(t, Y), t e I.

Suppose that
x(t, y)<< (t, Y), t e I.
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Then we have

(t, y)Y+f’ F(s, q(s, Y))ds b(t, Y), t e I.x+
J0

Since DTx(t, y) converges to Dx(t, y), we have (10). The con-
vergence itself may also be proved by the majorant method as above.

By shrinking (--T, T) and f2 if necessary we can take

(11) r(t,X)-C =o p!
with constants h and C.

Suppose that M=p !. Then
CF(t, (t, Y))=

1--h((t, Y)--(t, 0))
Hence b(t, Y) is obtained as a solution of

(12)
o(t, Y) c

1+Cht- h(t, Y)’
(0, Y)-- Y.

Since b(t, Y) is majorized for t_>_0 by the solution

(13) 1 /(l_y) 2Ct(t, Y)=-- - ----of

(14)
9v(t, y) C----- 1-h(t, Y)
(0, Y)= Y,

we can find for any T.<(2Ch)-’ constants k and B such that
(Dq(t)Bkqq I, O<_tgT, q=0, 1, 2, ..

In the general case we obtain a solution b(t, Y) of (9) by multiply-
ing the coefficient of Y" in the solution of (12) by M/p !, so that we
have
(15)

(12).

q(t)<=BkMq, O<_t<T, q=0,1,2,....
In fact, let o(t, Y)=b(t, Y)-Ct, where 4(t, Y) is the solution of
Then it is the limit of Picard’s approximation

0(t, Y)= Y,

/(t, Y)= Y+C (h(s, Y))’ds.
p=l

In general suppose that

E dr(t)Yr= h cq(t)Y
r=l

Then the coefficient
Mp

.h , Cq,(t) Mql ...Cq(t)
2o=1 p! ql+...+qv=r ql!

Of y in
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is less than or equal to d(t)M/r! because it follows from (2) that
M, Mq Mq_ <_M
p! q! q! r!

Therefore if we multiply the coefficient of Yq in (t, Y) by Mq/q!
and denote it again by (t, Y), we have

0(t, Y)= Y,

P!
(h(s, Y))ds.

Hence (t, Y)--lim ?(t, Y)+ Ct satisfies (9).

In view of Lemma 1 the estimates (15) prove Proposition 1 for
sufficiently small T. If T> T, we solve the equation with initial data
at t--T. Since composites of ultradifferentiable mappings of class
are ultradifferentiable of class under condition (2), we obtain Propo-
sition after a finite number of repetitions.

The proof of the theorem will be completed if we show that a solu-
tion x(t, y) of

(16) _d_x__ f(t, x)
dt

with parameters y is ultradifferentiable of class in t and y if it is
ultradifferentiable in y uniformly in t.

Since the infinite differentiability in t and y is easy to prove, we
need only to estimate DDx(to, y) for each fixed to. The formal Taylor
expansion

Xo(t, y) ax(t0,, y) (t- to):

satisfies equation (16) as a rmal power series in t-to with infinitely
differentiable functions of y as coefficients.

Thus the proof is reduced to the ollowing proposition o the
Cauchy-Kowalevsky type.

Proposition 2. If a formal power series

Xo(t, y)__ , x()(y) (t- to)
s:o

-o wh C eoeeee eqo (16) f hen
value x(y) is ultradifferentiable of class on [2, then Xo(t, y) is ultra-
differentiable of class in the sense that for each compact set K in 9
there are constants and A (resp. and for each lO there is a constant
A) such that

sup IDx(S)(y)l<=AlS/llM+ll, Il, ]=0, 1, 2, ....
yK

The constants and A (resp. constant A) depend only on the ultra-
differentiability of x()(y) and are independent of to.



No. 4] Ultradifferentiability of Solutions 141

Again we may restrict ourselves to the case of class {M}.
Suppose that

f(t, x) << F(X)= FX
in the sense that

D[Dfi(to, x)]F+, x e 9, ], lal=0, 1, 2, ...,
and that

Xo(t, y) << #(r).
{to}X9i

Then we have

(17)

and
(18)

then
(19)

f(t, x(t, y)) << F((Y))
{to}91

Hence we obtain the following lemma as in [2].
Lemma 2. If

d#(Y) >R(#())dY

(Y) }} x()(y),

Xto(t, y) (Y).
{t0}l

In case M--p! we can take F(X)=C(1-hX)- with constants h
and C. Therefore the equation for 9(Y)=#(Y)-(0)+Y/n becomes.

d() +C 1-- 1--nh (Y) -(o)=o.
In view of (13) the solution is majorized as

__1.(1_ 2nhCF)((F) (( -1,.(1 /1-2nhC’Y)/1
nh "n

where C’ C+ 1/n.

so that (18) holds.

Hence if we take h and C sufficiently large,

()>B__Y_+ Y,1--kY n
On the other hand (19) implies

Axto(t, Y) <<
to,, 1--1Y

or some constants and A.
The reduction of the general case to the above is similar to Propo-

sition 1.
Combining Theorem with the implicit unction theorem in [1], we

obtain the Frobenius theorem or ultradifferentiable manifolds o
class...
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