33. Ultradifferentiability of Solutions of Ordinary Differential Equations

By Hikosaburo Komatsu

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. j. a., April 12, 1980)

Let M_p , $p=0, 1, 2, \cdots$, be a sequence of positive numbers. An infinitely differentiable function f on an open set Ω in \mathbb{R}^n is said to be an *ultradifferentiable function of class* $\{M_p\}$ (resp. of class (M_p)) if for each compact set K in Ω there are constants h and C (resp. and for each h>0 there is a constant C) such that

 $\sup_{\alpha \in \mathcal{I}} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} M_{|\alpha|}, \qquad |\alpha| = 0, 1, 2, \cdots.$

We assume that M_p satisfies the following conditions:

(1) $M_0 = M_1 = 1;$

(2)
$$(M_q/q!)^{1/(q-1)} \leq (M_p/p!)^{1/(p-1)}, \quad 2 \leq q \leq p,$$

and furthermore in case of class (M_p)

(3)
$$\left(\frac{M_p}{p!}\right)^2 \leq \left(\frac{M_{p-1}}{(p-1)!}\right) \left(\frac{M_{p+1}}{(p+1)!}\right), \quad p=1, 2, \cdots,$$

and (4)

$$M_p/(pM_{p-1}) \rightarrow \infty$$
 as $p \rightarrow \infty$.

We consider the initial value problem of ordinary differential equation

(5)
$$\begin{cases} \frac{dx}{dt} = f(t, x), \\ x(0) = y, \end{cases}$$

where $f(t, x) = (f_1, \dots, f_n)$ is an *n*-tuple of functions defined on $(-T, T) \times \Omega$ with a T > 0 and an open set Ω in \mathbb{R}^n . We assume the Lipschitz condition in x. Then for each relatively compact open subset Ω_1 of Ω there is a $0 < T_1 \leq T$ such that (5) has for each $y \in \Omega_1$ a unique solution x = x(t, y) on the interval $(-T_1, T_1)$.

Our main result is the following

Theorem. If all components of f(t, x) are ultradifferentiable functions of class $\{M_p\}$ (resp. of class (M_p)) on $(-T, T) \times \Omega$, then the components of the solution x(t, y) are also ultradifferentiable functions of class $\{M_p\}$ (resp. of class (M_p)) on $(-T_1, T_1) \times \Omega_1$.

Hereafter we denote by * either $\{M_p\}$ or (M_p) . The theorem is proved in two steps.

Proposition 1. If f(t, x) is ultradifferentiable of class * only in x but uniformly in t, then x(t, y) is ultradifferentiable of class * in y uniformly in t.

The proof in the case of class (M_p) is reduced to the case of class $\{M_p\}$ by Lemma 6 of [2]. Therefore we may restrict ourselves to the latter case.

We employ the method of Leray-Ohya [3] when they proved the ultradifferentiability of the Gevrey class $\{p \, !^s\}$ for solutions of hyperbolic equations.

Let

$$F(t, X) = \sum_{p=0}^{\infty} \frac{F_p(t)}{p!} X^p$$

be a formal power series in X with coefficients $F_p(t)$ which are functions in t. We write

$$(6) f(t, x) \ll F(t, X), t \in I,$$

if every component f_i of f satisfies

$$|D_x^{\alpha}f_i(t,x)| \leq F_{|\alpha|}(t), \qquad x \in \Omega, \quad |\alpha|=0, 1, 2, \cdots,$$
for all $t \in I$. Let

$$\Phi(t, Y) = \sum_{q=0}^{\infty} \frac{\Phi_q(t)}{q!} Y^q \gg 0$$

be another formal power series in Y. Then we define

$$\overline{F}(t, \Phi(t, Y)) = \sum_{p=0}^{\infty} \frac{F_p(t)}{p!} (n(\Phi(t, Y) - \Phi(t, 0)))^p.$$

If x(t, y) is an *n*-tuple of functions on $I \times \Omega_1$ with values in Ω such that

(7)
$$x(t, y) \underset{g_1}{\ll} \Phi(t, Y), \quad t \in I,$$

and if (6) holds, then we have

(8)
$$f(t, x(t, y)) \ll_{\rho_1} \overline{F}(t, \Phi(t, Y)), \quad t \in I.$$

Lemma 1. Suppose that (6) holds for $I = [0, T_2]$. If $\Phi(t, Y)$ satisfies

(9)
$$\begin{cases} \frac{\partial \Phi(t, Y)}{\partial t} \gg \overline{F}(t, \Phi(t, Y)), & t \in I, \\ \Phi(0, Y) \gg Y. \end{cases}$$

then the solution x(t, y) of (5) is majorized as (10) $x(t, y) \underset{g_1}{\ll} \Phi(t, Y), \quad t \in I.$

Proof. The solution x(t, y) is obtained as the limit of Picard's approximation:

$$x_0(t, y) = y;$$

 $x_{k+1}(t, y) = y + \int_0^t f(s, x_k(s, y)) ds.$

Clearly we have

$$x_0(t, y) = y \underset{g_1}{\ll} Y \ll \Phi(t, Y), \qquad t \in I.$$

Suppose that

$$x_k(t, y) \ll \Phi(t, Y), \qquad t \in I.$$

Then we have

$$x_{k+1}(t,y) \underset{g_1}{\ll} Y + \int_0^t \overline{F}(s,\Phi(s,Y)) ds \ll \Phi(t,Y), \qquad t \in I.$$

Since $D_y^{\alpha} x_k(t, y)$ converges to $D_y^{\alpha} x(t, y)$, we have (10). The convergence itself may also be proved by the majorant method as above.

By shrinking (-T, T) and Ω if necessary we can take

(11)
$$F(t,X) = C \sum_{p=0}^{\infty} \frac{M_p}{p!} \left(\frac{h}{n}X\right)^p$$

with constants h and C.

Suppose that $M_p = p!$. Then

$$\overline{F}(t, \Phi(t, Y)) = \frac{C}{1 - h(\Phi(t, Y) - \Phi(t, 0))}.$$

Hence $\Phi(t, Y)$ is obtained as a solution of

(12)
$$\begin{cases} \frac{\partial \Phi(t, Y)}{\partial t} = \frac{C}{1 + Cht - h\Phi(t, Y)}, \\ \Phi(0, Y) = Y. \end{cases}$$

Since $\Phi(t, Y)$ is majorized for $t \ge 0$ by the solution

(13)
$$\Psi(t,Y) = \frac{1}{h} - \sqrt{\left(\frac{1}{h} - Y\right)^2 - \frac{2Ct}{h}}$$

of

(14)
$$\begin{cases} \frac{\partial \Psi(t,Y)}{\partial t} = \frac{C}{1 - h\Psi(t,Y)}, \\ \Psi(0,Y) = Y, \end{cases}$$

we can find for any $T_2 < (2Ch)^{-1}$ constants k and B such that $\Phi_q(t) \le Bk^q q!, \quad 0 \le t \le T_2, \quad q=0, 1, 2, \cdots$.

In the general case we obtain a solution
$$\Phi(t, Y)$$
 of (9) by multiply-
ing the coefficient of Y^p in the solution of (12) by M^p/p !, so that we
have

In fact, let $\varphi(t, Y) = \Phi(t, Y) - Ct$, where $\Phi(t, Y)$ is the solution of (12). Then it is the limit of Picard's approximation

$$\varphi_0(t, Y) = Y,$$

$$\varphi_{k+1}(t, Y) = Y + C \int_0^t \sum_{p=1}^\infty (h\varphi_k(s, Y))^p ds.$$

In general suppose that

$$\sum_{r=1}^{\infty} d_r(t) Y^r = \sum_{p=1}^{\infty} \left(h \sum_{q=1}^{\infty} c_q(t) Y^q \right)^p.$$

Then the coefficient

$$\sum_{p=1}^{r} \frac{M_{p}}{p!} h^{p} \sum_{q_{1}+\cdots+q_{p}=r} c_{q_{1}}(t) \frac{M_{q_{1}}}{q_{1}!} \cdots c_{q_{p}}(t) \frac{M_{q_{p}}}{q_{p}!}$$

of Y^r in

H. KOMATSU

$$\sum_{p=1}^{\infty} rac{M_p}{p!} \Big(h \sum_{q=1}^{\infty} c_q(t) rac{M_q}{q!} Y^q \Big)^p$$

is less than or equal to $d_r(t)M_r/r!$ because it follows from (2) that

$$\frac{M_p}{p!} \frac{M_{q_1}}{q_1!} \cdots \frac{M_{q_p}}{q_p!} \leq \frac{M_r}{r!}.$$

Therefore if we multiply the coefficient of Y^q in $\varphi_k(t, Y)$ by $M_q/q!$ and denote it again by $\varphi_k(t, Y)$, we have

$$arphi_0(t, Y) = Y,$$

 $arphi_{k+1}(t, Y) \gg Y + C \int_0^t \sum_{p=1}^\infty \frac{M_p}{p!} (h arphi_k(s, Y))^p ds.$

Hence $\Phi(t, Y) = \lim_{t \to 0} \varphi_k(t, Y) + Ct$ satisfies (9).

In view of Lemma 1 the estimates (15) prove Proposition 1 for sufficiently small T_1 . If $T_1 > T_2$, we solve the equation with initial data at $t=T_2$. Since composites of ultradifferentiable mappings of class *are ultradifferentiable of class * under condition (2), we obtain Proposition after a finite number of repetitions.

The proof of the theorem will be completed if we show that a solution x(t, y) of

(16)
$$\frac{dx}{dt} = f(t, x)$$

with parameters y is ultradifferentiable of class * in t and y if it is ultradifferentiable in y uniformly in t.

Since the infinite differentiability in t and y is easy to prove, we need only to estimate $D_t^j D_y^s x(t_0, y)$ for each fixed t_0 . The formal Taylor expansion

$$x_{t_0}(t, y) = \sum_{j=0}^{\infty} \frac{\partial^j x(t_0, y)}{\partial t^j} \frac{(t-t_0)^j}{j!}$$

satisfies equation (16) as a formal power series in $t-t_0$ with infinitely differentiable functions of y as coefficients.

Thus the proof is reduced to the following proposition of the Cauchy-Kowalevsky type.

Proposition 2. If a formal power series

$$x_{t_0}(t, y) = \sum_{j=0}^{\infty} x^{(j)}(y) \frac{(t-t_0)^j}{j!}$$

in $t-t_0$ with C^{∞} coefficients satisfies equation (16) and if the initial value $x^{(0)}(y)$ is ultradifferentiable of class * on Ω_1 , then $x_{t_0}(t, y)$ is ultradifferentiable of class * in the sense that for each compact set K in Ω_1 there are constants l and A (resp. and for each l > 0 there is a constant A) such that

$$\sup_{y\in K} |D_y^{\alpha} x^{(j)}(y)| \leq A l^{j+|\alpha|} M_{j+|\alpha|}, \qquad |\alpha|, j=0, 1, 2, \cdots$$

The constants l and A (resp. constant A) depend only on the ultradifferentiability of $x^{(0)}(y)$ and are independent of t_0 . Again we may restrict ourselves to the case of class $\{M_p\}$. Suppose that

$$f(t, x) \underset{t_0 \geq x}{\ll} F(\overline{X}) = \sum_{p=0}^{\infty} \frac{F_p}{p!} \overline{X}^p$$

in the sense that

 $|D_i^j D_x^\alpha f_i(t_0,x)| {\leq} F_{j+|\alpha|}, \qquad x \in \mathcal{Q}, \quad j, |\alpha| {=} 0, 1, 2, \cdots,$ and that

$$x_{t_0}(t,y) \underset{\{t_0\}\times \mathfrak{g}_1}{\ll} \Phi(\overline{Y}).$$

Then we have

$$f(t, x(t, y)) \underset{\substack{_{\{t_0\}\times \mathcal{G}_1}}{\approx} \overline{F}(\Phi(\overline{Y}))}{= \sum_{p=0}^{\infty} \frac{F_p}{p!} (\overline{Y} + n(\Phi(\overline{Y}) - \Phi(0)))^p.$$

Hence we obtain the following lemma as in [2]. Lemma 2. If

(17)
$$\frac{d\Phi(\overline{Y})}{d\overline{Y}} \gg \overline{F}(\Phi(\overline{Y}))$$

and

(18)
$$\Phi(\overline{Y}) \underset{\substack{g_1\\g_1}}{\gg} x^{(0)}(y),$$

then

(19)
$$x_{t_0}(t, y) \underset{[t_0] \times g_1}{\ll} \Phi(\overline{Y})$$

In case $M_p = p!$ we can take $F(\overline{X}) = C(1 - h\overline{X})^{-1}$ with constants h and C. Therefore the equation for $\varphi(\overline{Y}) = \Phi(\overline{Y}) - \Phi(0) + \overline{Y}/n$ becomes

$$\begin{cases} \frac{d\varphi(\overline{Y})}{d\overline{Y}} = \frac{C}{1 - nh\varphi(\overline{Y})} + \frac{1}{n}, \\ \varphi(0) = 0. \end{cases}$$

In view of (13) the solution is majorized as

$$\frac{1}{nh}(1 - \sqrt{1 - 2nhC\overline{Y}}) \ll \varphi(\overline{Y}) \ll \frac{1}{nh}(1 - \sqrt{1 - 2nhC'\overline{Y}}),$$

where C' = C + 1/n. Hence if we take h and C sufficiently large,

$$\varphi(\overline{Y}) \gg \frac{Bk\overline{Y}}{1-k\overline{Y}} + \frac{\overline{Y}}{n},$$

so that (18) holds. On the other hand (19) implies

$$x_{t_0}(t,y) \ll A_{\{t_0\} \times Q_1} \frac{A}{1 - l\overline{Y}}$$

for some constants l and A.

The reduction of the general case to the above is similar to Proposition 1.

Combining Theorem with the implicit function theorem in [1], we obtain the Frobenius theorem for ultradifferentiable manifolds of class *.

H. KOMATSU

References

- H. Komatsu: The implicit function theorem for ultradifferentiable mappings. Proc. Japan Acad., 55A, 69-72 (1979).
- [2] ——: An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci., Univ. Tokyo, Sec. IA, 26, 239–254 (1979).
- [3] J. Leray and Y. Ohya: Équations et systèmes non-linéaires, hyperboliques non-stricts. Math. Ann., 170, 167-205 (1967).