33. Ultradifferentiability of Solutions of Ordinary Differential Equations

By Hikosaburo Komatsu
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., April 12, 1980)

Let $M_{p}, p=0,1,2, \cdots$, be a sequence of positive numbers. An infinitely differentiable function f on an open set Ω in \boldsymbol{R}^{n} is said to be an ultradifferentiable function of class $\left\{M_{p}\right\}$ (resp. of class $\left(M_{p}\right)$) if for each compact set K in Ω there are constants h and C (resp. and for each $h>0$ there is a constant C) such that

$$
\sup _{x \in \mathbb{K}}\left|D^{\alpha} f(x)\right| \leqq C h^{|\alpha|} M_{|\alpha|}, \quad|\alpha|=0,1,2, \cdots
$$

We assume that M_{p} satisfies the following conditions:

$$
\begin{equation*}
M_{0}=M_{1}=1 ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(M_{q} / q!\right)^{1 /(q-1)} \leqq\left(M_{p} / p!\right)^{1 /(p-1)}, \quad 2 \leqq q \leqq p, \tag{2}
\end{equation*}
$$

and furthermore in case of class $\left(M_{p}\right)$

$$
\begin{equation*}
\left(\frac{M_{p}}{p!}\right)^{2} \leqq\left(\frac{M_{p-1}}{(p-1)!}\right)\left(\frac{M_{p+1}}{(p+1)!}\right), \quad p=1,2, \cdots, \tag{3}
\end{equation*}
$$

and
(4) $\quad M_{p} /\left(p M_{p-1}\right) \rightarrow \infty \quad$ as $p \rightarrow \infty$.

We consider the initial value problem of ordinary differential equation

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(t, x) \tag{5}\\
x(0)=y
\end{array}\right.
$$

where $f(t, x)=\left(f_{1}, \cdots, f_{n}\right)$ is an n-tuple of functions defined on ($-T, T$) $\times \Omega$ with a $T>0$ and an open set Ω in \boldsymbol{R}^{n}. We assume the Lipschitz condition in x. Then for each relatively compact open subset Ω_{1} of Ω there is a $0<T_{1} \leqq T$ such that (5) has for each $y \in \Omega_{1}$ a unique solution $x=x(t, y)$ on the interval $\left(-T_{1}, T_{1}\right)$.

Our main result is the following
Theorem. If all components of $f(t, x)$ are ultradifferentiable functions of class $\left\{M_{p}\right\}$ (resp. of class $\left(M_{p}\right)$) on $(-T, T) \times \Omega$, then the components of the solution $x(t, y)$ are also ultradifferentiable functions of class $\left\{M_{p}\right\}$ (resp. of class $\left(M_{p}\right)$) on $\left(-T_{1}, T_{1}\right) \times \Omega_{1}$.

Hereafter we denote by $*$ either $\left\{M_{p}\right\}$ or $\left(M_{p}\right)$. The theorem is proved in two steps.

Proposition 1. If $f(t, x)$ is ultradifferentiable of class $*$ only in x but uniformly in t, then $x(t, y)$ is ultradifferentiable of class $*$ in y uniformly in t.

The proof in the case of class $\left(M_{p}\right)$ is reduced to the case of class $\left\{M_{p}\right\}$ by Lemma 6 of [2]. Therefore we may restrict ourselves to the latter case.

We employ the method of Leray-Ohya [3] when they proved the ultradifferentiability of the Gevrey class $\left\{p!^{s}\right\}$ for solutions of hyperbolic equations.

Let

$$
F(t, X)=\sum_{p=0}^{\infty} \frac{F_{p}(t)}{p!} X^{p}
$$

be a formal power series in X with coefficients $F_{p}(t)$ which are functions in t. We write

$$
\begin{equation*}
f(t, x) \ll \Omega F(t, X), \quad t \in I, \tag{6}
\end{equation*}
$$

if every component f_{i} of f satisfies

$$
\left|D_{x}^{\alpha} f_{i}(t, x)\right| \leqq F_{|\alpha|}(t), \quad x \in \Omega, \quad|\alpha|=0,1,2, \cdots,
$$

for all $t \in I$. Let

$$
\Phi(t, Y)=\sum_{q=0}^{\infty} \frac{\Phi_{q}(t)}{q!} Y^{q} \gg 0
$$

be another formal power series in Y. Then we define

$$
\bar{F}(t, \Phi(t, Y))=\sum_{p=0}^{\infty} \frac{F_{p}(t)}{p!}(n(\Phi(t, Y)-\Phi(t, 0)))^{p}
$$

If $x(t, y)$ is an n-tuple of functions on $I \times \Omega_{1}$ with values in Ω such that

$$
\begin{equation*}
x(t, y)<\Omega_{1} \Phi(t, Y), \quad t \in I, \tag{7}
\end{equation*}
$$

and if (6) holds, then we have

$$
\begin{equation*}
f(t, x(t, y)) \Omega_{\Omega_{1}}^{<\bar{F}}(t, \Phi(t, Y)), \quad t \in I . \tag{8}
\end{equation*}
$$

Lemma 1. Suppose that (6) holds for $I=\left[0, T_{2}\right]$. If $\Phi(t, Y)$ satisfies

$$
\left\{\begin{array}{l}
\frac{\partial \Phi(t, Y)}{\partial t} \gg \bar{F}(t, \Phi(t, Y)), \quad t \in I, \tag{9}\\
\Phi(0, Y) \gg Y,
\end{array}\right.
$$

then the solution $x(t, y)$ of (5) is majorized as

$$
\begin{equation*}
x(t, y)<_{\Omega_{1}} \Phi(t, Y), \quad t \in I . \tag{10}
\end{equation*}
$$

Proof. The solution $x(t, y)$ is obtained as the limit of Picard's approximation:

$$
\begin{gathered}
x_{0}(t, y)=y \\
x_{k+1}(t, y)=y+\int_{0}^{t} f\left(s, x_{k}(s, y)\right) d s
\end{gathered}
$$

Clearly we have

$$
x_{0}(t, y)=y \ll \Omega_{1} Y \ll \Phi(t, Y), \quad t \in I .
$$

Suppose that

$$
x_{k}(t, y)<\Omega_{1} \ll(t, Y), \quad t \in I .
$$

Then we have

$$
x_{k+1}(t, y) \ll \Omega_{1} Y+\int_{0}^{t} \bar{F}(s, \Phi(s, Y)) d s \ll \Phi(t, Y), \quad t \in I
$$

Since $D_{y}^{\alpha} x_{k}(t, y)$ converges to $D_{y}^{\alpha} x(t, y)$, we have (10). The convergence itself may also be proved by the majorant method as above.

By shrinking ($-T, T$) and Ω if necessary we can take

$$
\begin{equation*}
F(t, X)=C \sum_{p=0}^{\infty} \frac{M_{p}}{p!}\left(\frac{h}{n} X\right)^{p} \tag{11}
\end{equation*}
$$

with constants h and C.
Suppose that $M_{p}=p!$. Then

$$
\bar{F}(t, \Phi(t, Y))=\frac{C}{1-h(\Phi(t, Y)-\Phi(t, 0))}
$$

Hence $\Phi(t, Y)$ is obtained as a solution of

$$
\left\{\begin{array}{l}
\frac{\partial \Phi(t, Y)}{\partial t}=\frac{C}{1+C h t-h \Phi(t, Y)} \tag{12}\\
\Phi(0, Y)=Y
\end{array}\right.
$$

Since $\Phi(t, Y)$ is majorized for $t \geqq 0$ by the solution

$$
\begin{equation*}
\Psi(t, Y)=\frac{1}{h}-\sqrt{\left(\frac{1}{h}-Y\right)^{2}-\frac{2 C t}{h}} \tag{13}
\end{equation*}
$$

of

$$
\left\{\begin{array}{l}
\frac{\partial \Psi(t, Y)}{\partial t}=\frac{C}{1-h \Psi(t, Y)} \tag{14}\\
\Psi(0, Y)=Y
\end{array}\right.
$$

we can find for any $T_{2}<(2 C h)^{-1}$ constants k and B such that

$$
\Phi_{q}(t) \leqq B k^{q} q!, \quad 0 \leqq t \leqq T_{2}, \quad q=0,1,2, \cdots
$$

In the general case we obtain a solution $\Phi(t, Y)$ of (9) by multiplying the coefficient of Y^{p} in the solution of (12) by M^{p} / p !, so that we have

$$
\begin{equation*}
\Phi_{q}(t) \leqq B k^{q} M_{q}, \quad 0 \leqq t \leqq T_{2}, \quad q=0,1,2, \cdots \tag{15}
\end{equation*}
$$

In fact, let $\varphi(t, Y)=\Phi(t, Y)-C t$, where $\Phi(t, Y)$ is the solution of (12). Then it is the limit of Picard's approximation

$$
\begin{gathered}
\varphi_{0}(t, Y)=Y \\
\varphi_{k+1}(t, Y)=Y+C \int_{0}^{t} \sum_{p=1}^{\infty}\left(h \varphi_{k}(s, Y)\right)^{p} d s
\end{gathered}
$$

In general suppose that

$$
\sum_{r=1}^{\infty} d_{r}(t) Y^{r}=\sum_{p=1}^{\infty}\left(h \sum_{q=1}^{\infty} c_{q}(t) Y^{q}\right)^{p} .
$$

Then the coefficient

$$
\sum_{p=1}^{r} \frac{M_{p}}{p!} h_{q_{1}+\cdots+q_{p}=r} c_{q_{1}}(t) \frac{M_{q_{1}}}{q_{1}!} \cdots c_{q_{p}}(t) \frac{M_{q_{p}}}{q_{p}!}
$$

of Y^{r} in

$$
\sum_{p=1}^{\infty} \frac{M_{p}}{p!}\left(h \sum_{q=1}^{\infty} c_{q}(t) \frac{M_{q}}{q!} Y^{q}\right)^{p}
$$

is less than or equal to $d_{r}(t) M_{r} / r$! because it follows from (2) that

$$
\frac{M_{p}}{p!} \frac{M_{q_{1}}}{q_{1}!} \cdots \frac{M_{q_{p}}}{q_{p}!} \leqq \frac{M_{r}}{r!} .
$$

Therefore if we multiply the coefficient of Y^{q} in $\varphi_{k}(t, Y)$ by M_{q} / q ! and denote it again by $\varphi_{k}(t, Y)$, we have

$$
\begin{gathered}
\varphi_{0}(t, Y)=Y, \\
\varphi_{k+1}(t, Y) \gg Y+C \int_{0}^{t} \sum_{p=1}^{\infty} \frac{M_{p}}{p!}\left(h \varphi_{k}(s, Y)\right)^{p} d s .
\end{gathered}
$$

Hence $\Phi(t, Y)=\lim _{k \rightarrow \infty} \varphi_{k}(t, Y)+C t$ satisfies (9).
In view of Lemma 1 the estimates (15) prove Proposition 1 for sufficiently small T_{1}. If $T_{1}>T_{2}$, we solve the equation with initial data at $t=T_{2}$. Since composites of ultradifferentiable mappings of class * are ultradifferentiable of class $*$ under condition (2), we obtain Proposition after a finite number of repetitions.

The proof of the theorem will be completed if we show that a solution $x(t, y)$ of

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x) \tag{16}
\end{equation*}
$$

with parameters y is ultradifferentiable of class $*$ in t and y if it is ultradifferentiable in y uniformly in t.

Since the infinite differentiability in t and y is easy to prove, we need only to estimate $D_{i}^{i} D_{\gamma}^{\alpha} x\left(t_{0}, y\right)$ for each fixed t_{0}. The formal Taylor expansion

$$
x_{t_{0}}(t, y)=\sum_{j=0}^{\infty} \frac{\partial^{j} x\left(t_{0}, y\right)}{\partial t^{j}} \frac{\left(t-t_{0}\right)^{j}}{j!}
$$

satisfies equation (16) as a formal power series in $t-t_{0}$ with infinitely differentiable functions of y as coefficients.

Thus the proof is reduced to the following proposition of the Cauchy-Kowalevsky type.

Proposition 2. If a formal power series

$$
x_{t_{0}}(t, y)=\sum_{j=0}^{\infty} x^{(j)}(y) \frac{\left(t-t_{0}\right)^{j}}{j!}
$$

in $t-t_{0}$ with C^{∞} coefficients satisfies equation (16) and if the initial value $x^{(0)}(y)$ is ultradifferentiable of class $*$ on Ω_{1}, then $x_{t_{0}}(t, y)$ is ultradifferentiable of class $*$ in the sense that for each compact set K in Ω_{1} there are constants l and A (resp. and for each $l>0$ there is a constant A) such that

$$
\sup _{y \in \mathbb{K}}\left|D_{y}^{\alpha} x^{(j)}(y)\right| \leqq A l^{j+\mid \alpha \alpha} M_{j+|\alpha|}, \quad|\alpha|, j=0,1,2, \cdots
$$

The constants l and A (resp. constant A) depend only on the ultradifferentiability of $x^{(0)}(y)$ and are independent of t_{0}.

Again we may restrict ourselves to the case of class $\left\{M_{p}\right\}$. Suppose that

$$
f(t, x) \underset{\left\{t_{0}\right\} \times \Omega}{\ll} F(\bar{X})=\sum_{p=0}^{\infty} \frac{F_{p}}{p!} \bar{X}^{p}
$$

in the sense that

$$
\left|D_{t}^{j} D_{x x}^{\alpha} f_{i}\left(t_{0}, x\right)\right| \leqq F_{j+|\alpha|}, \quad x \in \Omega, \quad j,|\alpha|=0,1,2, \cdots,
$$

and that

$$
x_{t_{0}}(t, y) \underset{\left\{t_{0}\right\} \times \Omega_{1}}{\ll} \Phi(\bar{Y}) .
$$

Then we have

$$
\begin{aligned}
& f(t, x(t, y)) \underset{\substack{\left(t_{0}\right) \times \Omega_{1}}}{\mathbb{K}(\Phi(\bar{Y}))} \\
& \quad=\sum_{p=0}^{\infty} \frac{F_{p}}{p!}(\bar{Y}+n(\Phi(\bar{Y})-\Phi(0)))^{p} .
\end{aligned}
$$

Hence we obtain the following lemma as in [2].
Lemma 2. If

$$
\begin{equation*}
\frac{d \Phi(\bar{Y})}{d \bar{Y}} \gg \bar{F}(\Phi(\bar{Y})) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(\bar{Y}) \gg \Omega_{1}>x^{(0)}(y), \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
x_{t_{0}}(t, y) \underset{\left\{t_{0}\right\} \times \Omega_{1}}{\ll} \Phi(\bar{Y}) . \tag{19}
\end{equation*}
$$

In case $M_{p}=p$! we can take $F(\bar{X})=C(1-h \bar{X})^{-1}$ with constants h and C. Therefore the equation for $\varphi(\bar{Y})=\Phi(\bar{Y})-\Phi(0)+\bar{Y} / n$ becomes

$$
\left\{\begin{array}{l}
\frac{d \varphi(\bar{Y})}{d \bar{Y}}=\frac{C}{1-n h \varphi(\bar{Y})}+\frac{1}{n}, \\
\varphi(0)=0 .
\end{array}\right.
$$

In view of (13) the solution is majorized as

$$
\frac{1}{n h}(1-\sqrt{1-2 n h C \bar{Y}}) \ll \varphi(\bar{Y}) \ll \frac{1}{n h}\left(1-\sqrt{1-2 n h C^{\prime} \bar{Y}}\right),
$$

where $C^{\prime}=C+1 / n$. Hence if we take h and C sufficiently large,

$$
\varphi(\bar{Y}) \gg \frac{B k \bar{Y}}{1-k \bar{Y}}+\frac{\bar{Y}}{n},
$$

so that (18) holds. On the other hand (19) implies

$$
x_{t_{0}}(t, y) \underset{\left\{t_{0}\right\} \times \Omega_{1}}{<} \frac{A}{1-l \bar{Y}}
$$

for some constants l and A.
The reduction of the general case to the above is similar to Proposition 1.

Combining Theorem with the implicit function theorem in [1], we obtain the Frobenius theorem for ultradifferentiable manifolds of class *.

References

[1] H. Komatsu: The implicit function theorem for ultradifferentiable mappings. Proc. Japan Acad., 55A, 69-72 (1979).
[2] -: An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci., Univ. Tokyo, Sec. IA, 26, 239-254 (1979).
[3] J. Leray and Y. Ohya: Équations et systèmes non-linéaires, hyperboliques non-stricts. Math. Ann., 170, 167-205 (1967).

