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32. A Note on Arithmetics in Semigroups*

By Kentaro MUIATA
Department of Mathematics, Yamaguchi University

(COmmunicated by Kunihiko KODAIRA, M. $. A., March 12, 1980)

Considering a modular closure of an ideal system in a semigroup,
we can define, following [1], a conductor of an order contained in (and
equivalent to) a regular maximal order of the semigroup. The aim of
this note is to introduce, by the conductor, regular ideals, regular v-
ideals and regular subsets of the semigroup, and to give factorization
theorems for these ideals and subsets by using the results in [2], [5].
Our results are applicable to the case of rings, if we take the "module-
generation" as a modular closure.

Let S be a (not necessarily commutative) semigroup with unity,
and let O be an order of S [2] such that it is contained in a regular
maximal order E of S and equivalent to E. Then, since E is regular,
O is regular and any (two-sided) E-ideal is a (two-sided) O-ideal. We
now fix a closure operation" aa’ of the set of all O-ideals to itself
with the conditions (i) a_a’, (ii) a5 implies a’___5’, (iii)a"=a’, and
(iv) a’5’_(aS)’. Here we assume, in addition, (v) 0’=0, (vi) E’=E,
and (vii) the lattice of the closed O-ideals is modular (cf. [4] for the
condition (vii)). The existence of such a closure is assured by the
discrete closure. Let O be an order of a ring R (R, +, .) such that it
is contained in (and equivalent to) a regular maximal order of R.
Then for each ’semigroup O-ideal’ a in the semigroup (R, .), the map"
aa’-(the ’ring O-ideal’ generated by a) satisfies the above seven con-
ditions. By this, our results below are applicable to the case of rings.

We introduce, following [1], the conductor {x e S ExE___ O} of
O with respect to E. Then is the unique maximal closed E-ideal
(two-sided) contained in O. Now we have

(1) If a is an O-ideal with (J)’=O, then (EaE)’ is an E-ideal
satisfying (EaE)’ (Ea)’ (aE)’, (EaE J )’ E, and (EE)’ 0 a’,
where J and denote set-union and intersection respectively.

(2) If A is an E-ideal with (A J )’=E, then A 0 is an O-ideal
satisfying ((A O) J )’-O and (E(A O)E)’= A’.

For any two O-ideals a, 5 we define the loin aV5 by (a J 5)’, the
meet aA5 by the intersection of a and 5, and the multiplication a. 5 by
(aS)’. Then these three operations are valid for E-ideals. Henceforth,
let F be the 1.o. semigroup [6] consisting of the closed O-ideals a’s with
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aVe=O, and K the 1.o. semigroup consisting of the closed E-ideals A’s
with A V[--E. Then by using (1), (2) we can show that

(3) The map " F--.K; a(a)--E.a.E gives an 1.o. semigroup-
isomorphism. Under the prime ideals in F correspond to the prime
ideals in K. (The inverse of is AA/O.)

A closed O-ideal a is said to be regular, if there is an ideal
such that .a e F. Then we can prove that if a is regular, both 5 .a
and a.5 are members of F for each 5 e F with 5_O. Hence in par-
ticular a. e F. Let T be the set of all regular ideals.. Then we have
the following"

(4) T is a residuated lattice under the usual residuals" a/b={x
e S; x5___} and 5\a={x e S; 5xa}.

(5) For each a e T, we have a/a=a\a=O.
(6) The inverse ideal a-= {x e S axa_a} of a e T is the set-union

of the O-ideals ’s such that
(7) For each a e T, we have O/a=a\O=a- e T.
For any regular ideal a, a* will denote (a-9 -. Then we have that

a e F implies a* e F. Two regular ideals a and 5 are said to be quasi-
equal if a*=5* (or equivalently a-=5-). By using (4), (5) we can see
the properties mentioned from 24th line of the 13th page to 2nd line
of the 14th page in [2]. Then classifying T by the quasi-equal relation,
we have the 1.o. group (R). The coset containing a e T will be denoted
dy C(a). Here we show that the lattice (R) is conditionally complete.
Suppose that {C(a3; e A} is bounded (upper), C(a)<C(5), say. Since
a5* for all , there is the least upper bound sup a, the closed O-ideal
generated by the set-union of a. Then, by taking c e F, b e F with
c.a e F, b.5* e F, we have O=b.(c.a)/_b.O.(sup a)/_b.5*k/
=O, b.(sup a)V[=O. Hence sup is a member of T, and it is clear
that C(sup a) is the least upper bound of {C(a) e A}. Thus by Theo-
rem 18 in [6; Chap. V], (R) is a commutative group. The coset C(a) is
called integral if a* e F. Then any two factorizations of an integral
coset have the same refinement (cf. Theorem 1.1 in [2]).

A regular ideal a is called here a (regular) v-ideal if a* =a. Then
we can show that any prime ideal p e F is a v-ideal, if it is not quasi-
equal to O. For any two regular ideals a, 5 we define the formal multi-
plication of a* and 5" by a* 5"=(*.5")*=(a.5)*. Then {a* a e T} is
an 1.o. group under the formal multiplication and the set-inclusion,
which is isomorphic to (R) as 1.o. groups.. Thus we obtain

Theorem 1 (Refinement Theorem). For any two decompositions

a*=a* a*=5* o5* of a* (a e F) with a e F, 5 e F, there is a
decomposition a* =c* *t such that c e F, and all a and all ap-
pear among c* ., c*

Theorem 2. If the ascending chain condition holds for v-ideals
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in F, then each v-ideal in F is factored as a ""-product of a finite
number of prime ideals in F, each of which is not quasi-equal to O.
The factorization is unique within the commutativity of the formal
multiplication.

Theorem 3. Under the same assumption as in Theorem 2, each
v-ideal a e T is decomposed as a On, where p are different
prime ideals in F such that they are not quasi-equal to O, and are
positive or negative integers. The decomposition is unique within the
commutativity of the formal multiplication.

A subset M of S is called regular, i (i) or each element x e M
there is a regular ideal a such that x e a and agM, and (ii) for any reg-
ular ideals a and 5 in M, (ab)*M. Suppose that the maximum
condition holds or v-ideals in F. Then by using some results in [5],
the regular sets are represented as some vectors, over the set-union of
the integers and --. Hence prime spots o M are defined, and the
P-component o 0 is defined or any subset P o prime ideals in F.
Then we can prove the" following theorem, which is a generalization
of both Theorem 3 and Theorem in [3].

Theorem 4. Under the same assumption as in Theorem 2, each
regular set M in S is decomposed as

where p, q() are different prime ideals in F such that they are no$

quasi-equal to O, are positive integers, fl(,) are negative integers,

denotes a finite product with respect to "", denotes the set-
union, P is the set of (-)-prime spots of M, and Oe is the P-com-
ponent of O. Moreover the decomposition is unique within the com-
mutativity of the formal multiplication.
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