32. A Note on Arithmetics in Semigroups^{*}

By Kentaro MURATA

Department of Mathematics, Yamaguchi University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1980)

Considering a modular closure of an ideal system in a semigroup, we can define, following [1], a conductor of an order contained in (and equivalent to) a regular maximal order of the semigroup. The aim of this note is to introduce, by the conductor, regular ideals, regular *v*ideals and regular subsets of the semigroup, and to give factorization theorems for these ideals and subsets by using the results in [2], [5]. Our results are applicable to the case of rings, if we take the "modulegeneration" as a modular closure.

Let S be a (not necessarily commutative) semigroup with unity, and let O be an order of S [2] such that it is contained in a regular maximal order E of S and equivalent to E. Then, since E is regular, O is regular and any (two-sided) E-ideal is a (two-sided) O-ideal. We now fix a closure operation: $a \mapsto a'$ of the set of all O-ideals to itself with the conditions (i) $a \subseteq a'$, (ii) $a \subseteq b$ implies $a' \subseteq b'$, (iii) a'' = a', and (iv) $a'b' \subseteq (ab)'$. Here we assume, in addition, (v) O'=O, (vi) E'=E, and (vii) the lattice of the closed O-ideals is modular (cf. [4] for the condition (vii)). The existence of such a closure is assured by the discrete closure. Let O be an order of a ring $R = (R, +, \cdot)$ such that it is contained in (and equivalent to) a regular maximal order of R. Then for each 'semigroup O-ideal' a in the semigroup (R, \cdot) , the map: $a \mapsto a' =$ (the 'ring O-ideal' generated by a) satisfies the above seven conditions. By this, our results below are applicable to the case of rings.

We introduce, following [1], the conductor $f = \{x \in S ; ExE \subseteq O\}$ of O with respect to E. Then f is the unique maximal closed E-ideal (two-sided) contained in O. Now we have

(1) If a is an O-ideal with $(a \cup f)' = O$, then (EaE)' is an E-ideal satisfying (EaE)' = (Ea)' = (aE)', $(EaE \cup f)' = E$, and $(EaE)' \cap O = a'$, where \cup and \cap denote set-union and intersection respectively.

(2) If A is an E-ideal with $(A \cup \mathfrak{f})' = E$, then $A \cap O$ is an O-ideal satisfying $((A \cap O) \cup \mathfrak{f})' = O$ and $(E(A \cap O)E)' = A'$.

For any two O-ideals a, b we define the *join* $a \lor b$ by $(a \cup b)'$, the *meet* $a \land b$ by the intersection of a and b, and the *multiplication* $a \cdot b$ by (ab)'. Then these three operations are valid for *E*-ideals. Henceforth, let **F** be the l.o. semigroup [6] consisting of the closed O-ideals a's with

^{*)} Dedicated to Professor G. Azumaya for his sixtieth birthday.

 $\alpha \lor \beta = 0$, and **K** the l.o. semigroup consisting of the closed *E*-ideals *A*'s with $A \lor \beta = E$. Then by using (1), (2) we can show that

(3) The map $\varphi : \mathbf{F} \to \mathbf{K}$; $\alpha \mapsto \varphi(\alpha) = E \cdot \alpha \cdot E$ gives an l.o. semigroupisomorphism. Under φ the prime ideals in \mathbf{F} correspond to the prime ideals in \mathbf{K} . (The inverse of φ is $A \mapsto A \land O$.)

A closed O-ideal α is said to be *regular*, if there is an ideal $c \in \mathbf{F}$ such that $c \cdot \alpha \in \mathbf{F}$. Then we can prove that if α is regular, both $b \cdot \alpha$ and $\alpha \cdot b$ are members of \mathbf{F} for each $b \in \mathbf{F}$ with $b\alpha \subseteq O$. Hence in particular $\alpha \cdot c \in \mathbf{F}$. Let \mathbf{T} be the set of all regular ideals. Then we have the following:

(4) **T** is a residuated lattice under the usual residuals: $a/b = \{x \in S ; xb \subseteq a\}$ and $b \setminus a = \{x \in S ; bx \subseteq a\}$.

(5) For each $a \in \mathbf{T}$, we have $a/a = a \setminus a = 0$.

(6) The inverse ideal $a^{-1} = \{x \in S ; axa \subseteq a\}$ of $a \in \mathbf{T}$ is the set-union of the O-ideals c's such that $a \cdot c \cdot a \subseteq a$.

(7) For each $a \in \mathbf{T}$, we have $O/a = a \setminus O = a^{-1} \in \mathbf{T}$.

For any regular ideal a, a^* will denote $(a^{-1})^{-1}$. Then we have that $a \in \mathbf{F}$ implies $a^* \in \mathbf{F}$. Two regular ideals a and b are said to be *quasi*equal if $a^* = b^*$ (or equivalently $a^{-1} = b^{-1}$). By using (4), (5) we can see the properties mentioned from 24th line of the 13th page to 2nd line of the 14th page in [2]. Then classifying **T** by the quasi-equal relation. we have the l.o. group \mathfrak{G} . The coset containing $\mathfrak{a} \in \mathbf{T}$ will be denoted dy $C(\mathfrak{a})$. Here we show that the lattice \mathfrak{G} is conditionally complete. Suppose that $\{C(\mathfrak{a}_{\lambda}); \lambda \in \Lambda\}$ is bounded (upper), $C(\mathfrak{a}_{\lambda}) \leq C(\mathfrak{b})$, say. Since $a_{\lambda} \subseteq b^*$ for all λ , there is the least upper bound $\sup_{\lambda} a_{\lambda}$, the closed O-ideal generated by the set-union of a_i . Then, by taking $c_i \in \mathbf{F}$, $b \in \mathbf{F}$ with $c_{\lambda} \cdot a_{\lambda} \in \mathbf{F}$, $\delta \cdot b^* \in \mathbf{F}$, we have $O = \delta \cdot (c_{\lambda} \cdot a_{\lambda}) \vee f \subseteq \delta \cdot O \cdot (\sup_{\lambda} a_{\lambda}) \vee f \subseteq \delta \cdot b^* \vee f$ $=O, b \cdot (\sup_{\lambda} a_{\lambda}) \lor f = O.$ Hence $\sup_{\lambda} a_{\lambda}$ is a member of **T**, and it is clear that $C(\sup_{\lambda} a_{\lambda})$ is the least upper bound of $\{C(a_{\lambda}); \lambda \in A\}$. Thus by Theorem 18 in [6; Chap. V], \mathfrak{G} is a commutative group. The coset $C(\mathfrak{a})$ is called *integral* if $a^* \in \mathbf{F}$. Then any two factorizations of an integral coset have the same refinement (cf. Theorem 1.1 in [2]).

A regular ideal a is called here a (regular) *v*-ideal if $a^*=a$. Then we can show that any prime ideal $p \in \mathbf{F}$ is a *v*-ideal, if it is not quasiequal to *O*. For any two regular ideals a, b we define the *formal multiplication* of a^* and b^* by $a^* \circ b^* = (a^* \cdot b^*)^* = (a \cdot b)^*$. Then $\{a^*; a \in \mathbf{T}\}$ is an l.o. group under the formal multiplication and the set-inclusion, which is isomorphic to \mathfrak{G} as l.o. groups. Thus we obtain

Theorem 1 (Refinement Theorem). For any two decompositions $a^* = a_1^* \circ \cdots \circ a_m^* = b_1^* \circ \cdots \circ b_n^*$ of a^* ($a \in \mathbf{F}$) with $a_i \in \mathbf{F}$, $b_j \in \mathbf{F}$, there is a decomposition $a^* = c_1^* \circ \cdots \circ c_t^*$ such that $c_k \in \mathbf{F}$, and all a_i^* and all b_j^* appear among c_1^*, \cdots, c_t^* .

Theorem 2. If the ascending chain condition holds for v-ideals

134

135

in **F**, then each v-ideal in **F** is factored as a " \circ "-product of a finite number of prime ideals in **F**, each of which is not quasi-equal to O. The factorization is unique within the commutativity of the formal multiplication.

Theorem 3. Under the same assumption as in Theorem 2, each v-ideal $\alpha \in \mathbf{T}$ is decomposed as $\alpha = \mathfrak{p}_1^{\epsilon_1} \circ \cdots \circ \mathfrak{p}_n^{\epsilon_n}$, where \mathfrak{p}_i are different prime ideals in \mathbf{F} such that they are not quasi-equal to O, and ε_i are positive or negative integers. The decomposition is unique within the commutativity of the formal multiplication.

A subset M of S is called *regular*, if (i) for each element $x \in M$ there is a regular ideal a such that $x \in a$ and $a \subseteq M$, and (ii) for any regular ideals a and b in M, $(a \lor b)^* \subseteq M$. Suppose that the maximum condition holds for v-ideals in \mathbf{F} . Then by using some results in [5], the regular sets are represented as some vectors over the set-union of the integers and $-\infty$. Hence prime spots of M are defined, and the P-component of O is defined for any subset P of prime ideals in \mathbf{F} . Then we can prove the following theorem, which is a generalization of both Theorem 3 and Theorem in [3].

Theorem 4. Under the same assumption as in Theorem 2, each regular set M in S is decomposed as

$$M = \mathfrak{p}_1^{\alpha_1} \circ \cdots \circ \mathfrak{p}_n^{\alpha_n} \circ \left(\bigcup_{\nu} \prod_{m(\nu)}^{\circ} \mathfrak{q}_{m(\nu)}^{\beta_m(\nu)} \right) \circ O_P$$

where \mathfrak{p}_i , $\mathfrak{q}_{\mathfrak{m}(\nu)}$ are different prime ideals in **F** such that they are not quasi-equal to O, α_i are positive integers, $\beta_{\mathfrak{m}(\nu)}$ are negative integers, $\prod_{i=1}^{n}$ denotes a finite product with respect to " \circ ", \bigcup denotes the setunion, P is the set of $(-\infty)$ -prime spots of M, and O_P is the P-component of O. Moreover the decomposition is unique within the commutativity of the formal multiplication.

References

- K. Asano and T. Ukegawa: Ergenzende Bemerkungen über die Arithmetik in Schiefringen. Journ. Inst. of Polytec., Osaka City Univ., 3, 1–7 (1951).
- [2] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Ibid., Osaka City Univ., 4, 9-33 (1953).
- [3] K. Murata: On submodules over an Asano order of a ring. Proc. Japan Acad., 50, 584-588 (1974).
- [4] ——: Multiplicative ideal theory in semigroups. Lect. Notes in Math., Inst. of Math., National Tsing Hua Univ., A-3 (1975).
- [5] —: On lattice ideals in a conditionally complete lattice-ordered semigroup. Algebra Universalis, 8, 111–122 (Birkhäuser Verlag) (1978).
- [6] L. Fuchs: Partially ordered algebraic systems. International Series of Monographs in Pure and Applied Math., 31 (Pergamon Press) (1963).