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32. A Note on Arithmetics in Semigroups™

By Kentaro MURATA
Department of Mathematics, Yamaguchi University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1980)

Considering a modular closure of an ideal system in a semigroup,
we can define, following [1], a conductor of an order contained in (and
equivalent to) a regular maximal order of the semigroup. The aim of
this note is to introduce, by the conductor, regular ideals, regular v-
ideals and regular subsets of the semigroup, and to give factorization
theorems for these ideals and subsets by using the results in [2], [5].
Our results are applicable to the case of rings, if we take the ‘“module-
generation” as a modular closure.

Let S be a (not necessarily commutative) semigroup with unity,
and let O be an order of S [2] such that it is contained in a regular
maximal order F of S and equivalent to . Then, since F is regular,
O is regular and any (two-sided) E-ideal is a (two-sided) O-ideal. We
now fix a closure operation: a—a’ of the set of all O-ideals to itself
with the conditions (i) aCa/, (ii) aZb implies o/ SV, (iii) a”’=a’, and
(iv) a0’ (ab)’. Here we assume, in addition, (v) O’'=0, (vi) E'=FE,
and (vii) the lattice of the closed O-ideals is modular (cf. [4] for the
condition (vii)). The existence of such a closure is assured by the
discrete closure. Let O be an order of a ring R=(R, 4+, -) such that it
is contained in (and equivalent to) a regular maximal order of E.
Then for each ‘semigroup O-ideal’ a in the semigroup (R, -), the map:
ar>a’ = (the ‘ring O-ideal’ generated by a) satisfies the above seven con-
ditions. By this, our results below are applicable to the case of rings.

We introduce, following [1], the conductor {={xe S; ExE <0} of
O with respect to £. Then f{ is the unique maximal closed E-ideal
(two-sided) contained in O. Now we have

D If ais an O-ideal with (aUfY =0, then (EaE) is an E-ideal
satisfying (EaE) = (Ea) = @E)Y, (BFaEUfY =E, and (EaEY N O =10,
where U and N denote set-union and intersection respectively.

@) If A is an E-ideal with (AUfY=E, then ANO is an O-ideal
satisfying (ANO)UT =0 and (E(ANO)EY =A’'.

For any two O-ideals a, b we define the join a\Vb by (aUb)’, the
meet a/\b by the intersection of a and b, and the multiplication a-b by
(ab)’. Then these three operations are valid for F-ideals. Henceforth,
let F be the l.o. semigroup [6] consisting of the closed O-ideals a’s with
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aV{=0, and K the l.o. semigroup consisting of the closed E-ideals A’s
with AVi=FE. Then by using (1), (2) we can show that

B) The map ¢: F-K;a—p(@)=F-a-E gives an l.o. semigroup-
isomorphism. Under ¢ the prime itdeals in F correspond to the prime
ideals in K. (The inverse of ¢ is A—~ANO.)

A closed O-ideal a is said to be regular, if there is an ideal ce F
such that c-.aeF. Then we can prove that if a is regular, both b-a
and a-b are members of F for each b ¢ F with bacO. Hence in par-

ticular a-ce F. Let T be the set of all regular ideals. Then we have
the following :

4) T is a residuated lattice under the usual residuals: a/b={z
eS;axbZa} and b\a={reS; bxZal.

(5) For each acT, we have a/a=a\a=0.

(6) The inverse ideal a'={x e S; axaZa} of ae T is the set-union
of the O-ideals ¢’s such that a-c-aZa.

() For each aeT, we have O/a=a\O=a"'eT.

For any regular ideal a, a* will denote (a~!)~!. Then we have that
aeF implies a* e F. Two regular ideals a and b are said to be quasi-
equal if a*=0* (or equivalently a-'=06""). By using (4), (5) we can see
the properties mentioned from 24th line of the 13th page to 2nd line
of the 14th page in [2]. Then classifying T by the quasi-equal relation,
we have the l.o. group . The coset containing a ¢ T will be denoted
dy C(a). Here we show that the lattice & is conditionally complete.
Suppose that {C(a,) ; 1€ 4} is bounded (upper), C(a) <C(b), say. Since
a,=b* for all 4, there is the least upper bound sup, a,, the closed O-ideal
generated by the set-union of a,. Then, by taking ¢;e F, d e F with
-q,eF, b.b*eF, we have O=>-(c;-a) ViSDh-O-(sup, a) ViSd-b* /|
=0, b-(sup,a)Vi=0. Hence sup, a, is a member of T, and it is clear
that C(sup;, a,) is the least upper bound of {C(a,); 2€ A}. Thus by Theo-
rem 18 in [6; Chap. V], & is a commutative group. The coset C(q) is
called integral if a* ¢ F. Then any two factorizations of an integral
coset have the same refinement (¢f. Theorem 1.1 in [2]).

A regular ideal a is called here a (regular) v-ideal if a*=a. Then
we can show that any prime ideal p e F is a v-ideal, if it is not quasi-
equal to O. For any two regular ideals a, b we define the formal multi-
plication of a* and b* by a* ob*=(a*-0*)*=(a-b)*. Then {a*; a e T} is
an l.o. group under the formal multiplication and the set-inclusion,
which is isomorphic to & as l.0. groups. Thus we obtain

Theorem 1 (Refinement Theorem). For any two decompositions
a¥=qfo...oa¥=0fo...0b¥ of a* (aeF) with a,eF, b,cF, there is a
decomposition a*=cf o - .. ocf such that ¢, € F, and oll af and all b ap-
pear among ¥, - - -, ck.

Theorem 2. If the ascending chain condition holds for v-ideals
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in F, then each v-ideal in F is factored as a “o”-product of a finite
number of prime ideals in F, each of which is not quasi-equal to O.
The factorization is unique within the commutativity of the formal
multiplication.

Theorem 3. Under the same assumption as in Theorem 2, each
v-ideal aeT is decomposed as a=pito ... opir, where p, are different
prime ideals in F such that they are not quasi-equal to O, and ¢, are
positive or negative integers. The decomposition is unique within the
commutativity of the formal multiplication.

A subset M of S is called regular, if (i) for each element x ¢ M
there is a regular ideal a such that z € a and a S M, and (ii) for any reg-
ular ideals a and b in M, (a\V/b)*CM. Suppose that the maximum
condition holds for v-ideals in F. Then by using some results in [5],
the regular sets are represented as some vectors over the set-union of
the integers and —oo. Hence prime spots of M are defined, and the
P-component of O is defined for any subset P of prime ideals in F.
Then we can prove the following theorem, which is a generalization
of both Theorem 8 and Theorem in [3].

Theorem 4. Under the same assumption as in Theorem 2, each
regular set M in S is decomposed as

o

M=o opre (U I] aing ) °Os

v mv
where P;, Gn, are different prime ideals in F such that they are not
quasi-equal to O, «; are positive integers, B,., are negative integers,

]2[ denotes a finite product with respect to “o”, | ) denotes the set-
unton, P is the set of (— oo)-prime spots of M, and Op is the P-com-
ponent of O. Moreover the decomposition is unique within the com-
mutativity of the formal multiplication.
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