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4. On the Initial Boundary Value Problem of the Linearized
Boltzmann Equation in an Exterior Domain

By Seiji UKAI® and Kiyoshi ASANO**)

(Communicated by Kosaku YO0SIDA, M. J. A., Jan. 12, 1980)

1. Problem and result. Let O be a bounded convex domain in
R* (n>3) with a smooth boundary and 2=R"\0. Put Q=2XR" and
S=={(x, &) € 02 X R" ; n(x)-£=0}, where n(x) is the inner normal of 92
at . For u=u(t, z, &) which is related to the density of gas particles
at time ¢t>0 and a point z e £ with a velocity & € R", our equation is
described as follows;

T A o S C A f K&, pult, z, pdy.
j=1 X R7

1.2) ul+=Cul,-).

(13) ult:o:‘uo(x, 5)

Here C is a linear operator from a function space on S~ to the
similar one on S*. Our assumptions on the collision operator L=y(&)
— K are those of cut-off hard potentials.

1.4) (&) is continuous in &, depends only on |&| and v(&)>v, >0
for some constant v,.

1.5) K&, p=K(@, &) ts real valued and continuous for &+u,

fRan(S,v)lpd77<°° for some p, 1<p<oo, IRnIK(S,n)I(l—I-I??I)‘“dr)

<dd+|&) =" for any a>0.
Moreover the operator L is non-negative self-adjoint in L*(R"™)
and has an isolated eigenvalue 0 with eigenfunctions {1,&,, - - -, &,, &}

X exp (——;—EF). (Note that the operator K induced from the integral

kernel K(&, p) is a compact self-adjoint operator in L*(R").)

Ag for the operator C we assume

1.6e) ||CL1
as an operator from L*(S~; p) to L*(S*; p), where p=p(x, &) =|n(x)-&|
and L*S*; p) is the space of square integrable function on S* with
respect to the measure p(zx, £)dS,d¢.

‘We define the linearized Boltzmann operator B by

L7 B=-3¢, aZ —u®) +K=—&7,— L with domain D(B)
Jj=1 7
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={ue L¥Q); (&-V,+v(@®)u(x, &) € L}(Q) and u|,..=Cul,-}. Then we have
the following

Theorem. Let n>3. Assume the conditions (1.4)-(1.6). Then,
the linearized Boltzmann operator B generates a contraction semi-group
e'®.  Moreover, if u,e LX(Q) N L*(R™; L'(2)), we have

(1.8) €Ul <€ @a(®) (| %llzaey + [|%ollacrrn; 21c0))s Where  ay(t)
=(141)"*log 2+1), at)=1A+1t)"log 2+t) and a,()=A+t)" for
n>5.

Remark. The exterior initial-boundary value problem of the
linearized Boltzmann equation was first considered by Ukai [6] in case
of reverse reflection. He obtained similar estimates for n>5 with
a,(t)=0+1t)"%. The estimate (1.8) enables us to study the global
existence of the solution of the exterior initial-boundary value problem
of the non-linear Boltzmann equation [1].

2. Results on the case @”=R" X R" without the boundary con-
dition. Put A*=—¢&.V,—u(&) and B*=A>+K, with D(A*)=D(B~)
={ue L*(Q~); -V, +v®)u(x, &) € LX(Q~)}=D~. A~ generates a semi-
group in X=IXQ~), (" w(x, ) =e *Ou(x—1t&, & and |e“”||<e .
B~ also generates a contraction semi-group in X. Put 4k, &)

=Ie‘”“”u(x, &dx, A~(k)=1¢-k—v(&) and B~(k)=A~(k)+ K. Then (A~u)"

(k,&)=A>(k)yi(k,& and (B~u)(k,&)=B~(k)yu(k,&. QA—A=(k) 'K is
a compact operator in L*(R") and depends continuously on 2 and %.
If Re 2> —y, and {1—(A1—A~(k))'K}* exists (is uniformly bounded for
keR"), then A—B~(k)'={1—Q—A~(K)'K}'A— A(k))"* exists
((A—B>)"! exists).

Ukai [5] and Nishida-Imai [4] proved that |(o+ir—A~(k))*K|—0
as |t|+|k|—oco uniformly in 6> —y,;, 0<p, <y,

Thus, putting C(—v,, r)={c+1r; >0, te R}U{o+1r; —1,<0<0,
|z|>7,} for some v, <y, and r,>>0, we have that |[{1—-(Q—A~(k)) 'K}
<Cj for (A, k) € C(—v, ) X R*. B=(k) is maximal dissipative in L*(R")
and has no eigenvalues on the imaginary axis for k0. This fact
and following Lemma 2.1 imply that the resolvent set p(B~) of B~
contains C(—B., ) U{o+1ir; —a.r’<e<0, |7|<z}\{0}=2] (B.., a..)\{0},
for some y,>p..>0, 0..>0 with f.=a.%.

Lemma. 2.1 (Ellis-Pinsky [2]). There exists k,>0 such that if
|k|<k, and Re 2>0,

" _1_n+1 1

2.1) (1—B~(k) _f?o m
2,(k)’s are C= functions of k and

2.2) 4(B)==i|k| 2" — |k} 2P +O0(E[)
with A real and 2>0. P, k)'s are also C functions of k and
one-dimensional projections commuting with B=(k), P(k)=1—3_ P (k).

P (k)+@—B=(k)"'P(k).
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A+|&D*Py(k) and Py k)A+|&D* are bounded operators in L*(R™).
@A—B>(k)'P(k) is analytically continued to {Re 2> —a,} with ¢,>0 and
uniformly bounded in ke R™ and A there.

Put P'(k)=3 Pk), Pu=(2r)" I ek, &)dk and P=1—P’.

1El1<ko
Denote by || || the norm in X. Let X,=L*R?; L'(R?) with norm | |,,
and X, =L*R?; |&|d¢; L~(RY) with norm || |..

Lemma 2.2 (cf. [4] and [5]). Forue XNX,,

2.2) ||e®"Pul|<Cyd+)"" [lull;,

2.3) |[[e®"Pul|<Coe" |ju],

2.4 e Pull.<Cd+)~"*|ull,

2.5) [|A—=B*)""Pul.<Co@l+|aD7" |ull, 2€ 35 (Bay @),

(2.6) [|(A—B~)""P'u|..<Cb,(2] || ul: 2€ 37 (Be) @),
where by(s)=s"", b(s)=log 1+s7Y), and b,(s)=1, n>5.

@D [ lo+ic—B) Pulf dr<C,lluff, 0= —p..

All these estimates hold for B**=¢&.V,—v(&)+ K.

3. Exterior problem. Let X and X, be asin § 2 with R? replaced
by 2. Let D={uneX; (& -V,+v(®))uec X}and Y, =L*(S*; p) with norm
| |s« Any ue D has its trace y*u on S*, that is,

lr-ul-<2|u| [|(§- V7 +vEul,
@y *ul, KC, |l 1§V +v(Eull,
where x(£) is a bounded function with compact support.

Define a closed linear operator A=—&.F,—u(&) with D(4)
={ueD;r*u=Cr-u}. |C|<1 implies that for ue D(4)

(3.1) Re (Au, )< —v, ||ulf.

Next two lemmas are useful to show that A generates a semi-group
in L*(Q).

Lemma 3.1. Let X and X, be as in §2. (i) For ¢>—y, and

ue X, there hold
2

3B.2) |rfe+ir—A~)'uli<
a+

[,
Yo

3.3) j " o tir— A% up dr=2r j : o2t |p e 4 y . dt< 2 ||ul.
(i) For 2e)] (B.,a.) and ue XNX,, there hold

B.4) [r*(A—B)""Pul.<Ci(1+[2D lul,,

3.5 [r*(—B*)"Pul.<Cib, (2] [l
(iii) For ¢>—p.. and ue X, there hold

(3.6) |[r*(e+ic—B~)""Pul.<C,|ul,

3.7 r 7% (0 +ic—B*)""Pul. de<C, ||uF.
Let S*(®)={xed?; n(®)-£>0} and Q*()={x+1t&; v S*(¢) and
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t>0}. For g(x,8&)ecY, we define R(Q)g € X by
(R(R)g)(x-l—té, $)= {e_ue—v(e)tg(x, E), 90+t$ € Q+(5)9
0, elsewhere.
For ¢> —v,, R(c+1r) is a bounded operator from Y, to X with norm
<2(o+v)) A

Lemma 3.2. LetAi=o+ir,0>—v,. Thenwehave (i) RQ)geD,
() @A+&-V,+v@E)RMWg=0in Q, (iii)) r*RAWg=g and y"R(A)g=0,
Gv) I RWg. | <827 (e + v gl., W [|KRDg|; < d,|02]7 (o
+v)7tgl, and (vi) R@Q*=y*(A—A~*)"'. Here |0R2| is the measure
of 0%2.

For a function % on @, let eu be the extension of u to Q~, by
putting eu=0 outside Q. Denote by rv the restriction of a function
v on Q- to Q. We can easily see that

B.8) A—A)'=r2—A")'e—RW)G+*—Cr)2—A~)"'e for Re2x
> —y, Because of (8.1), A generates a semi-group in X and | e
<e P,

Since K is a bounded operator in X, B=A -+ K generates a semi-
group in X. The inequality Re (Bu,#)<0 implies ||e'?||<1. By the
resolvent equation we have

A—B)'={1—-Q—A)'K}'@—-4)"
From the next lemma we see that for any v, € (0,v,) there exists z,>0
such that |[{1—(1—A)'K}*||<C, for 1€ C(—y,, 7).

Lemma 3.3. 7*(A—A~)"'K is a compact operator from L*Q~) to
Y.. For any v,e(0,v), |[(6+ic—A=)'K|—0 as |t|—>oc0 uniformly in
o> —,.

Now we note another expression of (A—B)™';

3.9 A—B)'=ra2—B")'e—RWNG*—Cyr)2—B~)"'e—(A—B)™*
x KR((* —Cr-)a—B)"e.

Putting C=y*—Cy~, we have

3.10) {1+(Z—B)“K}{l+R(2)C(2—B°°)“Ke}=1+1~(2—B°°)"‘Ke.
Put p=er, p’=1—p and By=A"+Kp'=B>—Kp. Then we have
{1—(— A" Kp}{l+Q—B5)"Kp}=1 and {1—Q—B5) Kp}{1+Q
—B~)"'Kp}=1 in L¥Q~). (A—A~)"'Kp’ is a compact operator in
LXQ=) and Bg has no eigenvalues on the imaginary axis. Therefore
from the similar argument of § 1, (A—Bj)~! exists for Re i> —v,, 0<y,
<v,, as an operator in L*Q>). Thus {14+ (A—B~)'Kp}'={1—Q
—Bj3) 'Kp} exists for Re 1> —v;. Hence {1+r(21—B~)"'Ke}* exists for
Re 2> —y, as an operator in X=L*Q). Thus {1-(1—A)'K}''={14+Q
—B)-'K} exists if and only if {1+R(1)C(A—B=~)"'K}~* exists, when
Re 1> —y,. (8.9), (8.10) and the operator equality (1+7U)'=1-T(1
+UT)-'U imply that .

3.11) A—B)'=r@Q—B~)'e—[r*QA—B"*)"'e]*{14+CQA—B~)"*
x KeR()}'C(A—B~)"e.



16 S. UkAr and K. ASANO [Vol. 56 (A),

Putting T(2)=C~’(2—B°°)"KeR(2), we have
Lemma 3.4. (i) T'(2)isa compact operatoronY , for i€ > (B, @..).
i) T@ and T'(2) are analytic in 3 (B, ¢..)\{0} and

3.12) |TW(<C,, d%m) \gcsbn(lzp.

(iii) There exists >, (B, @) C >, (B..,a.) such that for 2e€(B,a)
{14+T)}* exists and

3.13) [{1+TW}|<Cs

Let U(?) be the inverse Laplace transform of {1+ T'()}'C(A—B~)"'e.
Then (3.11) implies that for v and v e X

¢
(e'Bu, v)=(ret®~eu, v) ——J KU, y*e*=9Eev) ds.
0

From (2.4) and (38.7) for B~*, it follows that
[7* e P *ev|, < C, |92 (L4-8) " ||v ],

r ¢t |1+ gt Pyl dt<C, ||v L.
0
Put U@)=U,(t)+ U,(t), where
U\t = ZLI {1+ T} CA—B~)‘ed2,
Iy

7l
Uty =orr | 1+ T@YCG—B") teds,
27f'& ry
with I'/={1=—a’+1ir; |7|<7} and I',={A=—B+1ir; |t|>7, B=ari}
Then on account of Lemma 3.4, we get
|U,@®u|, <C,A+D)" |||,

ﬁ" e | U dE<C, ||ulP.

Thus we have
[(e*Pu, v)| < Co(1+ 1)~ *(|ulli+112 D [V [+ Csan @l | ulD [0,
which proves (1.8).

Remark. Recently we obtained decay estimates for solutions of
Cauchy problem of the linearized Boltzmann equation with a cut-off
soft potential.
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