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1o Introduction. In his book [1], Paul Lvy has extensively
developed a potential theory in an infinite dimensional space.

T. Hida and H. Nomoto have constructed the projective limit
(,/) of the topological stochastic amily {(n,/)} consisting o the
open subsets n O the finite dimensional spheres S and the restrictions

/ to of the uniform probability measures on S such that p()
1.

By using this theory, we shall prove the relation"
L(, Z)= lim L(, Z)

and give an interpretation to Lvy’s potential theory or Dirichlet
problems on the unit ball by introducing the Brownian motion (B, E)
on an infinite dimensional space E such that E. We shall also
establish the strong Markov property, the uniform continuity of the
paths and the skew product formula of the Brownian motion.

2. Projectively consistent construction of multiple Wiener
integrals. First we reformulate T. Hida and H. Nomoto’s results [2]
in a slightly different manner rom theirs. Let S be the sphere with
center zero and radius Jn+ 1 in the (n+ 1)-dimensional Euclidean space
E+, and be the open subset o S consisting o the points
(x, ., Xn )

( sin 0,x,=+
x= i cos

_
sin , (k=2, ..., n),

x.+, cos e.,
with the restriction that (,, ., 8,)e H’, where Hn: {(, ", n);
00:2Z, 08Z, i=2,...,n}. We denote by , (nm) the pro-
jection of to such that the following is commutative"

,
S >S.

Set

J=(x=(x, ...,x,, ...); lim 1-x=l,x4=0or
’
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and define a sequence of projections, {Pn n >/1} by
px x for x (x, ..., x, ) e .

We denote by the a-algebra generated by cylinder sets of and by
/ the standard Gaussian white noise on . Then (p n/> 1} on (,/)
can be viewed as mutually independent random variables which are
subject to the standard normal distribution N(0, 1).

Further we define the projection as ollows"
1nx (Xl, Xn +1)

1 x. Then we have the followingwhere x]+,-
n+l

Proposition 2.1 (T. Hida and H. Nomoto [2]). Let (nl) be
the topological a-algebra on n, and Zn be the restriction to of the
uniform probability measure on S. Then

1) U;(n) generates the a-algebra ,
n=l

2) fln(A):fl(X(A)) for A e ,
3) Z(;,2(A))=z(A), (n>m) for A .
Let (14n) be the sequence o the complex Hilbert spaces

L(,, Pn). We shall define a projection p, (nm)
using the branching rule of the representation theory of the rotation
group SO(n+ 1) (see [5, pp. 44951]).

To begin with, for integers ]2, m k0 we put
D,, () A,,_(->/+(cos )(sin ),

where <-’)/’+ denotes the Gegenbauer polynomial and the positive
constant A,,, is determined so as to have

I: D,,(0)(sin 0)-d0=f: (sin

A base of homogeneous harmonic polynomials on can be taken to
be the amily

.(0, ..., 0)=e
j=2

where Kn stands or the sequence of integers (k, ...,
Okk. k.

Since the system (,,+, ,,_} constitutes a C.O.N.S. in , we can
Kn

determine the orthogonal projection p, (nm) of n to in terms
o, s"

P’’ otherwise,
where K denotes the subsequence (k,,..., k) of the given sequence

K. Thus the projective system (, p,} has been defined.
Now for an infinite sequence K of integers (k, ., kn, ") satisfy-

ing 0 k. k_ k kn+ kn+ with an n, we define the
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functions ,/, ,_ on as follows"
c,/ F((n+l)/2) (n+l’’

where [K] and (0,,..., 0) denote k and the Euler angles o zx or the
n, respectively. Since the family {,+,F,_} constitutes a

C.0.N.S. in the complex Hilbert space =L(S, p), we can define the
orthogonal projection p of to n as follows", if k k+ k+PnF, otherwise,
where Kn denotes the subsequence (k, ..., k) of the given infinite
sequence K. Now, dualizing Proposition 2.1, we have the following

Theorem 2.2. 1) For fe,

lim [ If(x)--(pf)(x)l p(dx)=0.

2) Let (f e;nl} be a pro]ectively consistent sequence, that
is, P,fn=f (nm). Then there exists a function f e such that

pf f (nl),
if and only if sup tlfll, where ll denotes the norm of .. Infinite dimensional space E and Brownian motion on E.
Set

,={x=(x,...,x,,...)eR;sup--1 5 x<},
and introduce semi-norms { I 1n }

x[= --1 E x, x [ lim x n"
k=l

Let O and O be the topologies induced by the semi-norms {ll. ]n 1 n
} and the semi-norms {ll [n 1 n} respectively. The a-algebra

generated by cylinder sets of g will be denoted by : =a(p n1),
where PnX Xn for x (x,, ., x, ) e E.

Remark. 1) is generated by O-open sets, not by O-open sets.
2) The topological space (, 0) is non-separable.
3) For any positive number a and x in ,

n (log n)+"

In thesequel we shall use only the O-topology of without ex-
plicit mentions.. Now let {Wn(t);n 1} be a family of mutually in-
dependent l-dimensional Wiener processes (Wn(0)=0) on a complete
probability space (, , fi). Then we can prove

Theorem.l. 1) For any x=(x, ., Xn, .) e E,

li (x+w(t))=llx I+t, for any tO a.s.
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2) lim _1 (w()_wAs))=l_sl or any t, s>O a.s.
k=l

Thus we see that the process W(t)
w(t)=(w(t), ..., w,(t), ...)

is living in E, which will be called the E-valued Wiener proeess. We
denote by 12 the totality of continuous sample paths o on E and by
the mapping"

B,() =(t) for e 9.
Now Theorem 3.1 gives us probability measures P on 9, x e E, such
that"

px(B(t) e A, tc= 1, ..., n)= P(W(t) e A-x, k= 1, ..., n)
for 0<t<...<t<c and A,...,Ae. Then we have a strong
Markov process (12, P, Bt) with state space (E, ). Theorem 3.1 shows
(3.1) liB(t, )1 IB(0, )l/t, for any t/>0 a.s. P, x e E.
Hence denoting by r the first exit time from the unit ball D={x e E;
x I1< 1, we have

r() 1- Ix 15 a.s. P, (x e D).
We shall call the process B (/2, P,B,) with state space (E,) the
Brownian motion on E.

4. Spherical Brownian motion. In this section we shall see
that as in finite dimensional cases, the Brownian motion B on E is
factored as the skew product of its radial part and an independent
spherical Brownian motion (see [3]). We denote by S the unit sphere
{x e E;llx I--1}, and P, ( e S) the restriction of the probability
measure P to the set I)={w e t9; ]o(0)ll=l}. In view of (3.1), by
putting

St(w) e-/B(e- 1, (o),
we have a strong Markov process (/2, P, ,) with state space S. We
also have or any e S

(t, oo)--(s, oo)l=2(1--e-It-l/) for any t,s>/O a.s. P.
We shall call this process the spherical Brownian motion. Let
(r e (0, c)) be the probability measure on the set t=(0, c) such that

1 if reAP(A)=
0 if r e A.

We define the mapping r as follows" r()=/+t for e D. Then
we have a deterministic Markov process (D,/, r) with state space
(0, ), which will be called the radial process. Associate the random
clock r"

r(d)) d log" + t
r()

with the radial process. By putting ={x e E;]I x]l0}, we have
Theorem 4.1. The skew product process (tP, P,Bt) with state

space
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B((6o, ))=r()(:(), ),
px pr p for x r, r 0, e S, x e E,

is equivalent to the part of the Brownian motion B on the open set
It seems that this theorem could be identified with the Lvy’s

formula ([1, p. 305, (5)]) which is expressed in erms of the generators
of the Brownian motion, he radial process and the spherical Brownian
motion.

Lastly we remark that the spherical Brownian motion (t) on S
is an infinite dimensional Ornstein-Uhlenbeck process. The theorem
gives a new approach to investigation of infinite dimensional Brownian
motions and Ornstein-Uhlenbeck processes (cf. [4]). More details
will be discussed in a forthcoming note.
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