1. A Note on Mikusiński's Operational Calculus

By Kôsaku Yosida, m. J. a., and Shûichi Okamoto*)

(Communicated Jan. 12, 1980)
§ 1. Introduction. In [ii], one of the present authors gave a simplified derivation of Mikusiński's operational calculus [i] without appealing to Titchmarsh's theorem concerning the vanishing of the convolution of two continuous functions defined on [$0, \infty$).

The purpose of the present note is to give a further simplification of [ii] to the effect that we can derive the operational calculus directly from the ring \mathcal{C}_{H} in [ii] without introducing the ring \mathcal{C}_{P} in [ii]. For the sake of convenience for the reader, we shall begin with the definition of the ring \mathcal{C}_{H}.
§ 2. The ring \mathcal{C}_{H}. We denote by \mathcal{C} the totality of complex-valued continuous functions defined on $[0, \infty)$. We denote such a function by $\{f(t)\}$ or simply by f, while $f(t)$ means the value at t of the function f. For $f, g \in \mathcal{C}$ and $\alpha, \beta \in K$ ($=$ the complex number field) we define

$$
\begin{equation*}
\alpha f+\beta g=\{\alpha f(t)+\beta g(t)\} \quad \text { and } \quad f g=\left\{\int_{0}^{t} f(t-s) g(s) d s\right\} . \tag{1}
\end{equation*}
$$

Then \mathcal{C} is a commutative ring with respect to the above addition and multiplication over the coefficient field K.

We shall denote by h (l in [i]) the constant function $\{1\} \in \mathcal{C}$ so that we have

$$
\begin{equation*}
h^{n}=\left\{\frac{t^{n-1}}{(n-1)!}\right\} \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
h f=\left\{\int_{0}^{t} f(s) d s\right\} \quad \text { for } f \in \mathcal{C} \tag{3}
\end{equation*}
$$

i.e. h behaves as an operation of integration. Then we have the following fairly trivial

Proposition 1. For $k \in \boldsymbol{H}=\left\{k ; k=h^{n}(n=1,2, \cdots)\right\}$ and $f \in \mathcal{C}$, the equation $k f=0$ implies that $f=0$, where 0 denotes $\{0\} \in \mathcal{C}$.

Therefore we can construct the commutative ring \mathcal{C}_{H} of fractions:

$$
\begin{equation*}
\mathcal{C}_{H}=\left\{\frac{f}{k} ; f \in C \text { and } k \in \boldsymbol{H}\right\} \tag{4}
\end{equation*}
$$

where the equality is defined by

$$
\begin{equation*}
\frac{f}{k}=\frac{f^{\prime}}{k^{\prime}} \quad \text { if and only if } k^{\prime} f=k f^{\prime} \tag{5}
\end{equation*}
$$

and the addition and multiplication are defined through

[^0]\[

$$
\begin{equation*}
\frac{f}{k}+\frac{f^{\prime}}{k^{\prime}}=\frac{k^{\prime} f+k f^{\prime}}{k k^{\prime}} \text { and } \frac{f}{k} \frac{f^{\prime}}{k^{\prime}}=\frac{f f^{\prime}}{k k^{\prime}}, \tag{6}
\end{equation*}
$$

\]

respectively.
By identifying $f \in \mathcal{C}$ with $k f / k \in \mathcal{C}$, the ring \mathcal{C} can be isomorphically embedded as a subring of the ring \mathcal{C}_{H}. For any complex number α, we define

$$
\begin{equation*}
[\alpha]=\frac{\{\alpha\}}{h} \in \mathcal{C}_{H} . \tag{7}
\end{equation*}
$$

Then we have, for $\alpha, \beta \in K, f \in \mathcal{C}$ and $k \in \boldsymbol{H}$,

$$
\begin{array}{ll}
{[\alpha]+[\beta]=[\alpha+\beta],} & {[\alpha][\beta]=[\alpha \beta],} \\
{[\alpha] f=\alpha f=\{\alpha f(t)\},} & {[\alpha] \frac{f}{k}=\frac{\{\alpha f(t)\}}{k}=\frac{\alpha f}{k}} \tag{7}
\end{array}
$$

Hence $[\alpha]$ can be identified with the complex number α, not with $\{\alpha\}$, and we see that the effect of the multiplication by $[\alpha]$ is exactly the α. times multiple. In particular [1] may be identified with the multipli. cative unit I of \mathcal{C}_{H} :

$$
\begin{equation*}
I=\frac{h^{n}}{h^{n}} \quad(n=1,2, \cdots) \tag{8}
\end{equation*}
$$

We then define

$$
\begin{equation*}
s=\frac{h^{n}}{h^{n+1}} \in \mathcal{C}_{H} \quad\left(n=0,1,2, \cdots ; h^{0}=I\right) \text { so that } s h=I \tag{9}
\end{equation*}
$$

Proposition 2. If both f and its derivative f^{\prime} belong to \mathcal{C}, then we have

$$
\begin{equation*}
f^{\prime}=s f-f(0), \quad \text { where } f(0)=[f(0)] \tag{10}
\end{equation*}
$$

that is, s behaves as an operation of differentiation.
Proof. Clear from (9) and Newton's formula

$$
h f^{\prime}=\left\{\int_{0}^{t} f^{\prime}(s) d s\right\}=\{f(t)-f(0)\}=f-[f(0)] h
$$

Corollary. For n-times continuously differentiable function $f \in \mathcal{C}$,

$$
f^{(n)}=s^{n} f-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)
$$

$$
\begin{equation*}
\text { where } f^{(j)}(0)=\left[f^{(j)}(0)\right] \tag{10}
\end{equation*}
$$

Proposition 3. For any $\alpha \in K$ and for any positive integer n, the element

$$
(s-\alpha)^{n}=(s-[\alpha])^{n}=\frac{(I-[\alpha] h)^{n}}{h^{n}} \in \mathcal{C}_{H}
$$

admits a uniquely determined multiplicative inverse in \mathcal{C}_{H} given by
(11) $\frac{I}{(s-\alpha)^{n}}=\left\{\frac{t^{n-1}}{(n-1)!} e^{\alpha t}\right\}=n$-times multiplication of $\left\{e^{\alpha t}\right\}$.

Proof. We have $(s-\alpha)\left\{e^{\alpha t}\right\}=I$ by (10) and so (11) is easily obtained.
§3. The operational calculus. Consider the following Cauchy problem for linear ordinary differential equation with coefficients $\in K$:

$$
\left\{\begin{array}{l}
\alpha_{n} y^{(n)}+\alpha_{n-1} y^{(n-1)}+\cdots+\alpha_{0} y=f \in \mathcal{C} \quad\left(\alpha_{n} \neq 0\right) \tag{12}\\
y(0)=\gamma_{0}, y^{\prime}(0)=\gamma_{1}, \cdots, y^{(n-1)}(0)=\gamma_{n-1} .
\end{array}\right.
$$

By (10)', we can rewrite (12) into equation in \mathcal{C}_{H} :

$$
\begin{align*}
& \left(\alpha_{n} s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{0}\right) y=f+\beta_{n-1} s^{n-1}+\beta_{n-2} s^{n-2}+\cdots+\beta_{0} \\
& \beta_{m}=\alpha_{m+1} \gamma_{0}+\alpha_{m+2} \gamma_{1}+\cdots+\alpha_{n} \gamma_{n-m-1} \quad(m=0,1,2, \cdots, n-1) . \tag{12}
\end{align*}
$$

Since the polynomial ring of polynomials in s with coefficients in K is free from zero factors, we can define rational functions

$$
F_{1}=\frac{I}{\alpha_{n} s^{n}+\cdots+\alpha_{0}} \quad \text { and } \quad F_{2}=\frac{\beta_{n-1} s^{n-1}+\cdots+\beta_{0}}{\alpha_{n} s^{n}+\cdots+\alpha_{0}}
$$

and obtain their partial fraction expressions:

$$
\begin{equation*}
F_{1}=\sum_{j} \sum_{k=1}^{m j} \frac{c_{j k} I}{\left(s-r_{j}\right)^{k}} \quad \text { and } \quad F_{2}=\sum_{j} \sum_{k=1}^{m j} \frac{d_{j k} I}{\left(s-r_{j}\right)^{k}} \tag{13}
\end{equation*}
$$

where $c_{j k}$ and $d_{j k}$ belong to K and r_{j} are roots of the algebraic equation $\alpha_{n} z^{n}+\cdots+\alpha_{0}=0$ so that $\sum_{j} m_{j}=n$. As was proved in (11), F_{1} and F_{2} given in (13) belong to $\mathcal{C} \subset \mathcal{C}_{H}$ so that we obtain, from (12)', the solution of (12):

$$
\{y(t)\}=\sum_{j} \sum_{k=1}^{m j} c_{j k}\left\{\frac{t^{k-1}}{(k-1)!} e^{r_{j j} t}\right\}\{f(t)\}+\sum_{j} \sum_{k=1}^{m j} d_{j k}\left\{\frac{t^{k-1}}{(k-1)!} e^{r_{j} t}\right\}
$$

In this way, Mikusiński's operational calculus can be derived without appealing to Titchmarsh's theorem nor to the ring \mathcal{C}_{P} in [ii], that is, the totality of fractions f / p of the form $f(\in \mathcal{C})$ over non-zero polynomial p (in t) with cofficients $\in K$.

References

[i] Jan Mikusiński: Operational Caluclus. Pergamon Press (1959).
[ii] Shûichi Okamoto: A simplified derivation of Mikusinski's operational calculus. Proc. Japan Acad., 55A (1), 1-5 (1979).

[^0]: *) Department of Mathematics, Gakushuin University.

