1. A Note on Mikusiński's Operational Calculus

By Kôsaku Yosida, M. J. A., and Shûichi OKAMOTO^{*)}

(Communicated Jan. 12, 1980)

§1. Introduction. In [ii], one of the present authors gave a simplified derivation of Mikusiński's operational calculus [i] without appealing to Titchmarsh's theorem concerning the vanishing of the convolution of two continuous functions defined on $[0, \infty)$.

The purpose of the present note is to give a further simplification of [ii] to the effect that we can derive the operational calculus directly from the ring C_{μ} in [ii] without introducing the ring C_{ρ} in [ii]. For the sake of convenience for the reader, we shall begin with the definition of the ring C_{μ} .

§2. The ring C_{H} . We denote by C the totality of complex-valued continuous functions defined on $[0, \infty)$. We denote such a function by $\{f(t)\}$ or simply by f, while f(t) means the value at t of the function f. For $f, g \in C$ and $\alpha, \beta \in K$ (=the complex number field) we define

(1)
$$\alpha f + \beta g = \{\alpha f(t) + \beta g(t)\}$$
 and $fg = \left\{\int_{0}^{t} f(t-s)g(s)ds\right\}$.

Then C is a commutative ring with respect to the above addition and multiplication over the coefficient field K.

We shall denote by h (l in [i]) the constant function $\{1\} \in C$ so that we have

(2)
$$h^n = \left\{ \frac{t^{n-1}}{(n-1)!} \right\}$$
 $(n=1, 2, \cdots),$

and

(3)
$$hf = \left\{ \int_0^t f(s) ds \right\} \quad \text{for } f \in \mathcal{C},$$

i.e. h behaves as an operation of integration. Then we have the following fairly trivial

Proposition 1. For $k \in H = \{k ; k = h^n (n = 1, 2, \dots)\}$ and $f \in C$, the equation kf = 0 implies that f = 0, where 0 denotes $\{0\} \in C$.

Therefore we can construct the commutative ring C_{H} of fractions:

(4)
$$C_{H} = \left\{ \frac{f}{k}; f \in C \text{ and } k \in H \right\}$$

where the equality is defined by

(5)
$$\frac{f}{k} = \frac{f'}{k'}$$
 if and only if $k'f = kf'$,

and the addition and multiplication are defined through

^{*)} Department of Mathematics, Gakushuin University.

K. YOSIDA and S. OKAMOTO

[Vol. 56(A),

(6)
$$\frac{f}{k} + \frac{f'}{k'} = \frac{k'f + kf'}{kk'}$$
 and $\frac{f}{k} \frac{f'}{k'} = \frac{ff'}{kk'}$,

respectively.

By identifying $f \in C$ with $kf/k \in C$, the ring C can be isomorphically embedded as a subring of the ring C_{H} . For any complex number α , we define

(7)
$$[\alpha] = \frac{\{\alpha\}}{h} \in \mathcal{C}_{H}.$$

Then we have, for $\alpha, \beta \in K$, $f \in C$ and $k \in H$,

$$\begin{array}{c} [\alpha] + [\beta] = [\alpha + \beta], \\ [\alpha]f = \alpha f = \{\alpha f(t)\}, \\ [\alpha]f = \alpha f = \{\alpha f(t)\}, \\ [\alpha] \frac{f}{k} = \frac{\{\alpha f(t)\}}{k} = \frac{\alpha f}{k}. \end{array}$$

Hence $[\alpha]$ can be identified with the complex number α , not with $\{\alpha\}$, and we see that the effect of the multiplication by $[\alpha]$ is exactly the α -times multiple. In particular [1] may be identified with the multiplicative unit I of C_H :

(8)
$$I = \frac{h^n}{h^n}$$
 $(n=1, 2, \cdots).$

We then define

(9)
$$s = \frac{h^n}{h^{n+1}} \in C_H$$
 $(n=0, 1, 2, \dots; h^0 = I)$ so that $sh = I$.

Proposition 2. If both f and its derivative f' belong to C, then we have

(10)
$$f'=sf-f(0), \quad where \ f(0)=[f(0)],$$

that is, s behaves as an operation of differentiation.

Proof. Clear from (9) and Newton's formula

$$hf' = \left\{ \int_0^t f'(s) ds \right\} = \{f(t) - f(0)\} = f - [f(0)]h.$$

Corollary. For n-times continuously differentiable function $f \in C$, $f^{(n)} = s^n f - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0),$

(10)'

where
$$f^{(j)}(0) = [f^{(j)}(0)]$$
.

Proposition 3. For any $\alpha \in K$ and for any positive integer n, the element

$$(s-\alpha)^n = (s-[\alpha])^n = \frac{(I-[\alpha]h)^n}{h^n} \in \mathcal{C}_H$$

admits a uniquely determined multiplicative inverse in C_{H} given by

(11)
$$\frac{I}{(s-\alpha)^n} = \left\{ \frac{t^{n-1}}{(n-1)!} e^{\alpha t} \right\} = n \text{-times multiplication of } \{e^{\alpha t}\}.$$

Proof. We have $(s-\alpha)\{e^{\alpha t}\}=I$ by (10) and so (11) is easily obtained.

§ 3. The operational calculus. Consider the following Cauchy problem for linear ordinary differential equation with coefficients $\in K$:

2

No. 1]

(12)
$$\begin{cases} \alpha_n y^{(n)} + \alpha_{n-1} y^{(n-1)} + \dots + \alpha_0 y = f \in \mathcal{C} \\ y(0) = \gamma_0, y'(0) = \gamma_1, \dots, y^{(n-1)}(0) = \gamma_{n-1}. \end{cases}$$

By (10)', we can rewrite (12) into equation in C_{μ} :

(12)'
$$\begin{array}{l} (\alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0) y = f + \beta_{n-1} s^{n-1} + \beta_{n-2} s^{n-2} + \dots + \beta_0, \\ \beta_m = \alpha_{m+1} \gamma_0 + \alpha_{m+2} \gamma_1 + \dots + \alpha_n \gamma_{n-m-1} \qquad (m=0, 1, 2, \dots, n-1). \end{array}$$

Since the polynomial ring of polynomials in s with coefficients in K is free from zero factors, we can define rational functions

$$F_1 \!=\! rac{I}{lpha_n s^n \!+\! \cdots \!+\! lpha_0} \hspace{0.2cm} ext{and} \hspace{0.2cm} F_2 \!=\! rac{eta_{n-1} s^{n-1} \!+\! \cdots \!+\! eta_0}{lpha_n s^n \!+\! \cdots \!+\! lpha_0}$$

and obtain their partial fraction expressions:

(13)
$$F_1 = \sum_j \sum_{k=1}^{m_j} \frac{c_{jk}I}{(s-r_j)^k}$$
 and $F_2 = \sum_j \sum_{k=1}^{m_j} \frac{d_{jk}I}{(s-r_j)^k}$,

where c_{jk} and d_{jk} belong to K and r_j are roots of the algebraic equation $\alpha_n z^n + \cdots + \alpha_0 = 0$ so that $\sum_j m_j = n$. As was proved in (11), F_1 and F_2 given in (13) belong to $\mathcal{C}\subset \mathcal{C}_H$ so that we obtain, from (12)', the solution of (12):

$$\{y(t)\} = \sum_{j} \sum_{k=1}^{m_{j}} c_{jk} \left\{ \frac{t^{k-1}}{(k-1)!} e^{r_{jt}} \right\} \{f(t)\} + \sum_{j} \sum_{k=1}^{m_{j}} d_{jk} \left\{ \frac{t^{k-1}}{(k-1)!} e^{r_{jt}} \right\}$$

In this way, Mikusiński's operational calculus can be derived without appealing to Titchmarsh's theorem nor to the ring C_p in [ii], that is, the totality of fractions f/p of the form $f(\in C)$ over non-zero polynomial p (in t) with cofficients $\in K$.

References

- [i] Jan Mikusiński: Operational Caluclus. Pergamon Press (1959).
- Shûichi Okamoto: A simplified derivation of Mikusinski's operational calculus. Proc. Japan Acad., 55A(1), 1-5 (1979).