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0. Introduction. In this paper we prove a finiteness theorem
for the set of dominant rational maps to a variety of hyperbolic type.
Let k be an algebraically closed field of characteristic zero. In this
paper we assume all varieties are defined over k.

First we recall the definition of the Kodaira dimension. Let X
be a smooth algebraic variety, then by Nagata and Hironaka there
exists a complete smooth algebraic variety X such that Dx" =X-X is
a divisor with normal crossings. Let Kx be the canonical divisor of
X and , the rational map of X which is associated with the linear
system m(Kz+Dx)I.

Definition 1 ([3] and [4]). The logarithmic Kodaira dimension
z(X) of X is

(sup dim (X), if [m(Kx+Dx)l=(O) for some m e N,
m0

[ co if ]m(K+Dx) l= (0) for every m e N.
If X is complete, z(X) is denoted by (X) and is called the Kodaira
dimension of X. X is said to be of elliptic type, of parabolic type,
and of hyperbolic type, if z(X)=--oo, 0, and dim(X), respectively.
Algebraic varieties of hyperbolic type are also called of general type.

This. notion of hyperbolicity is different from that of [5]. But
it is known that a smooth algebrai.c variety of hyperbolic type is.
measure-hyperbolic in the sense of [5] (cf. [8]). The Kodaira dimen-
sion is an important bi-rational invariant to classify algebraic varieties
(cf. [10]).

Definition 2. Let X and Y be algebraic varieties.. A rational
map f" X-Y is said to be a strictly rational map, if there exists a
proper bi-rational morphism z" X’-+X such that foz is a morphism.
f is said to be dominant, if dim (foz)(X’)=dim (Y).

Our main theorem is as follows"
Theorem. Le$ X be a smooth algebraic variety and Y a smooth

algebraic variety of hyperbolic type. Then the set of dominant
strictly rational maps of X to Y is finite.

The following varieties are examples, of varieties of hyperbolic
type.

,7 This is a shorter version of the master thesis submitted by the author in
February 1977 to the University of Tokyo.
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Example 1. Let D be a hypersurface with normal crossings of
P with degree __>n+2. Then P-D is of hyperbolic type.

Example 2. Let _q) be a bounded symmetric domain and/ a dis.-
crete arithmetic subgroup of the group of bi-holomorphic automor-
phism of_q). Then/F is. an algebraic variety (cf. [1]). If, moreover,
/’ has no torsion element, then )/I is of hyperbolic type (cf. [9]).

Kobayashi and Ochiai proved the following theorem in [6].

Theorem. Let X be a compact complex manifold and Y a com-
pact complex manifold of general type. Then the set of dominant
meromorphic maps of X to Y is finite.

Moreover Iitaka and Sakai proved the following theorem in [4]
and [8].

Theorem. Let X be a smooth algebraic variety of hyperbolic
type. Then the set of strictly bi-rational maps" X--X is finite.

Our theorem can be seen as. a generalization of these theorems.
I thank Prof. S. Iitaka for valuable discussions.

1. Preliminary. Let X (i= 1, 2) be a smooth algebraic variety
which is an open subset of a complete smooth algebraic variety X
such that D’=X--X is a divisor with normal crossings. The
sheaf of germs of logarithmic q-forms on X along D is defined as in
[2], which we denote by 2q(log D).

Lemma 1 (cf. [4]). Let f" X--X2 be a strictly rational map and
m a positive integer. And let f" X-X2 be the extension of f. Then

if o e F(X, (q(log D2))(R)), f*() e F(X, (/q(log D))(R)).
Let X and Y be as in the Theorem. In 1 and 2, we assume

that dim (X)--dim (Y)--n. Let X (resp. Y) be a complete algebraic
variety which contains X (resp. Y) as its open subset such that
Dx’--X-X (resp. Dr’=---Y) is a divisor with normal crossings..

To prove the theorem we may assume that X and Y are projective.
If it is not the case, let x" X’X (resp. r" Y’Y) be a bi-rational
morphism such that X’ (resp. ’) is projective and (Dz) (resp. (Dr))
is a divisor with normal crossings. Then z(Y) is of hyperbolic type
by Lemma 1, and if f" X-Y is a strictly rational map, (=r,(r))-lof
z’() is also a strictly rational map, since a composition of strictly
rational maps is a strictly rational map. We replace X (resp. Y) by
(X) (resp. u(Y)) and X (resp. Y) by X’ (resp. Y’).

Let Kx (resp. Kr) be the canonical divisor of X (resp. Y). The
linear system m(K-Dz) (resp. m(Kr-D) ]) is canonically identified
with F(X, (/2(log Dx))(R)) (resp./(, (/2(log Dr))(R)). Let f" XY be
a strictly rational map and f" XY its extension. Then the follow-
ing condition (*) holds by Lemma 1.

(*) If oo e lm(Kr-D)l, f*() e Im(K-Dx)l.
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Let R be the set of dominant rational maps of X to Y which satisfy
the condition (*). It suffices to prove that R is finite. If f e R,
f*’]m(Kr+D)l--lm(K+Dz) is injective, since f is dominaat.
Hence if R:/:O, X is also of hyperbolic type. We assume that R:/:O.

There exists, a positive integer m such that the rational map o X
which is associated with ]m(Kx+Dx)l is. bi-rational to its image. Fur-
thermore we can take a positive integer m so that the ollowing con-
dition (**) also holds (c. [6]).

(**) There exists an effective divisor C on Y such that the linear
system ]m(Kr+Dr)--CI is very ample.
We fix this m throughout 1 and 2. Put

Vx "=]m(Kx+Dx)l,
Vr "=Im(K+Dr)--CI,
H’=Horn (Vr, Vz)v (v means the dual).

Let iz be the rational map of X to P(Vx) which is associated with

Vx and ir the embedding o Y to P(Vr) which is associated with Vr.
If f e R, f*" Vr- Vx determines a point fv o P(H), since f* is not
zero. There 2ollows the commutative diagram below.

P}iVxx) fv>P(V’):iy
X > Y

f
Lemma2. Let f, g eR. If fV=gV, then f=g.
Proof. Since ix is bi-rational and ir is an embedding.
2. Proof of the finiteness of R. Let Fo" P(Vz)P(H)--->P(V.)

be the rational map which is determined by the morphism" VxH
--Vr. For a rational map f we denote by Ind (f) the set of points of
indeterminacy of f. Let T be an algebraic variety and G" XT-+Y
a rational map which satisfies the following condition (***).

(***) X{t}-Ind (G) is a non-empty open subset of X for every
teT.
Then we denote by Xt X{t} and by Gt the restriction of G to Xt.
If h e P(H), Ind (F0) P(Yx) {h} is a linear subspace o P(x) {h}.
Since ix(X) is not contained in a hyperplane of P(x), the restric-
tion of F0 to ix(X) P(H) satisfies, the similar condition to (***). F"
=Foo(ix ide()) is a rational map oXP(H) to p(zr) satisfying (***).

The ollowing two lemmas can be proved easily.
Lemma :. Let H be the subset of P(H) such that h e H if and

only if F(X)ir(F). Then H is a closed subset of P(H).
Lemma 4. Let H be the subset of H such that h e H belongs ta

H if and only if F is dominant. Th.en H is an open subset of H.
Lemma . Let T be an algebraic variety and G" XT--Y a

strictly rational map satisfying (***) such that Gt i8 dominant for
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every t e T. And let o be an element of Vr and T the subset of T
such that t e T belongs to T if and only if G*t (o) e Vx. Then T is
closed subset of T.

Proof. Let p" T-T be a desingularization of Tand G Go(id X p)..
It sufficies to prove that T is. closed subset o T, since p is proper.
Let /k(Tt) and /k(T) be the vector bundle o n-orms on X>< T and

respectively. There exists an exact sequence of vector bundles

0 ;p*(A(T)) .A(T) ;A(T/) ;0.

A"(T/) is isomorphic to the pull back of the canonical line bundle
of X by p" XX T-+X.

*() is a rational section of (A(T))(R) and =(R)(*(w)) is a
rational section of (A *(Tx/)) wher.e u is as in the sequence above.
We may assume that =/=0. Let E and F be the divisor of zeros and
poles of u(R)(G*(w)) respectively, and Et and F the restriction o E and
F to X respectively. Let i’XXx T be the inclusion. Since G is
dominant, X--Ind (G)-G(Dr) is a non-empty open subset of Xt.
On Xt-Ind ()-(D) it holds that i*((R)(*()))-*(). Hence
Et, FtXt.

Now we prove the assertion by an induction on dim (T). Let S
be the subset o T such that t e T belongs to S if and only if dim (E
F)_>_n- 1. Then S is closed by the semi-continuity o dim (Et ] Ft).

By the assumption o the induction, S is. a closed subset o S, hence
of T.

By Lemma 6 below, F (t e T) constitute a flat family of divisors.
Hence there exists a morphism g of T to the Hilbert scheme o X such
that g(t) is the point corresponding to Ft. Let Dx--= D be the
irreducible decomposition o Dx. And let A-(a-(a,a,...,av);a
e Z and O<=a<=m}, and p (a e A) the point of the Hilbert scheme of
X which corresponds to the divisor =aD. Then it is easily seen
that T.=g-({p}e.)US.. Hence T. is. closed in T.

Lemma 6 ([7, 20 F Corollary 1]). Let A be a Noetherian ring,
B a Noetherian A-algebra, M a finite B-module, and f e B. Assume
that

( ) M is A-fiat.
(ii) For any maximal ideal P of B, f is M/(P A)M-regular.

Then f is M-regular and M/fM is A-fiat.
Let H= (H), then H is a closed subset of H. R is. mapped

injectively to H by the correspondence" ff. Let be the closure
o H in P(H), and q’H--H a desingularization of H such that
q-I(H--H) is a divisor with normal crossings. And let
o(idx q) be the rational map of XH to Y.

Let H be the subset o H such that h e H belongs to H if and
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only if F(X)cDr. It is easily seen that Ht is. a closed subset of H3.
Let w be an element of Vr. If h e H, F*(o) is defined on X and coin-
cides with i*(=(R)(F*(w))) on a non-empty open subset of X as. in the
proof of Lemma 5. F*(w) is not defined if h e Hr. But we can prove
that i*(=(R)(F*(w))) is defined and contained in Vx even if h e H,.

Lemma 7. i*((R)(F*((o))) e Vx.
Proof. By Lemma 1 and the definition o H, F*(w) is a logarith-

mic m-ple n-orm on X/3 along Dx I3 p;l(H4). Hence (R)(/*(w))
is. a logarithmic form along Dx H, hence i*((R)(F*(w))) is. a logarith-
mic form along Dx.

Thus we constructed a linear map f" Vr--Vx or h e H, hence a
morphism 9" H--H such that 9(h): fv. Since H is complete and H
is affine, Im () is finite. If h e H, (h)v" Vr-- Vx coinsides with F(>
Vr--Vx. Therefore the image o the map q of H to H" hF* is.
finite. Now it follows thatH is finite, since is injective as in Lemma
2, which proves that R is finite.

3. The case dim (X)dim (Y). In this. section we prove the
theorem in the case dim (X) dim (Y). Assume that there exist infinite
dominant strictly rational maps ft (i: 1, 2,...) of X to Y. Then by
[6] there exists a subvariety X of X such that all f (i: 1, 2, ...) are
defined and distinct on X, fx are dominant, and dim (X):dim (Y).
This. contradicts to the result of 2.

4. In analytic categories. Let X be a complex manifold such
that there exists a compact complex space which contains. X as. its.
Zariski open subset. Then the logarithmic Kodaira dimension of X
is. defined as in the case of algebraic varieties. Then by the similar
method as before we can prove the following"

Theorem. Let X be a complex manifold which X is a Zariski
open subset of a Moishezon manifold X and Y a complex manifold
which Y is a Zariski open subset of a compact complex manifold
Y. Then if Y is of hyperbolic type, the set of dominant meromorphic
maps of X to Y which are extended to meromorphic maps of X to Y
is finite.

We need the assumption that X is a Moishezon manifold for the
existence of an analytic subspace o X such as X1 in 3.

A dominant holomorphic map o X to Y is extended to a mero-
morphic map o X to (cL [8]). Hence the set o dominant holomor-
phic maps of X to Y is. finite.
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