16. The Implicit Function Theorem for Ultradifferentiable Mappings

By Hikosaburo KOMATSU Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

Let M_p , $p=0, 1, 2, \cdots$, be a sequence of positive numbers. An infinitely differentiable function f on an open set U in \mathbb{R}^n is said to be an *ultradifferentiable function of class* $\{M_p\}$ (resp. of class (M_p)) if for each compact set K in U there are constants h and C (resp. and each h>0 there is a constant C) such that

 $\sup_{x\in K} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} M_{|\alpha|}, \qquad |\alpha|=0, 1, 2, \cdots.$

A mapping $F = (f_1, \dots, f_m)$ from an open set U in \mathbb{R}^n into \mathbb{R}^m is said to be *ultradifferentiable of class* $\{M_p\}$ (resp. (M_p)) if all components f_i are ultradifferentiable functions of class $\{M_p\}$ (resp. (M_p)).

We assume that M_p satisfies the following conditions:

(1) $M_0 = M_1 = 1;$ There is a constant H such that (2) $(M_q/q!)^{1/(q-1)} \leq H(M_p/p!)^{1/(p-1)}, \quad 2 \leq q \leq p;$ Furthermore in case of class (M_p) (3) $\frac{M_p}{pM_{p-1}} \rightarrow \infty \quad \text{as} \quad p \rightarrow \infty.$

Then we have

The inverse mapping theorem. If $F = (f_1, \dots, f_n)$ is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)) from an open set U in \mathbb{R}^n into an open set V in \mathbb{R}^n and if the Jacobian

$$\frac{\partial(f_1, \cdots, f_n)}{\partial(x_1, \cdots, x_n)} = \det\left(\frac{\partial f_i}{\partial x_j}\right)$$

does not vanish at x^0 in U, then there exist an open neighborhood U_0 of x^0 in U and an open neighborhood V_0 of $y^0 = F(x^0)$ in V such that Frestricted to U_0 is a homeomorphism onto V_0 and the inverse on V_0 is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)).

Proof. By the inverse mapping theorem for C^{∞} mappings there are open neighborhoods U_0 and V_0 such that $F: U_0 \rightarrow V_0$ is a C^{∞} diffeomorphism. We may assume that the inverse matrix of $(\partial f_i/\partial x_j)$ is uniformly bounded on U_0 . To estimate the derivatives of the inverse mapping $F^{-1} = (g_1, \dots, g_n): V_0 \rightarrow U_0$, we assume that 0 is an arbitrary point in U_0 and F maps it to 0 in V_0 .

Let (a_{ij}) be the inverse matrix of $(\partial f_i / \partial x_j)$ at 0 in U_0 . We set

H. KOMATSU

$$\varphi_i(x) = x_i - \sum_{j=1}^n a_{ij} f_j(x), \qquad i=1, \cdots, n.$$

First we consider the case of ultradifferentiable mapping of class $\{M_p\}$. Then there are constants h and C such that

$$\varphi_i(x) \ll C \sum_{p=2}^{\infty} \frac{M_p}{p!} (ht)^p,$$

where

$$t=x_1+\cdots+x_n.$$

This means that the formal Taylor expansion of the left hand side is majorized by the right hand side.

If U_0 is relatively compact in U, we can choose the same constants h and C independent of the arbitrary point 0 in U_0 .

Since the components $g_i(y)$ of F^{-1} are the solutions of the system of equations

$$g_i(y) = \sum_{j=1}^n a_{ij}y_j + \varphi_i(g_1(y), \dots, g_n(y)), \quad i=1, \dots, n,$$

each $g_i(y)$ is majorized by the formal solution $\psi(s)$ of the equation

$$\psi(s) = Bs + C \sum_{p=2}^{\infty} \frac{M_p}{p!} (hn\psi(s))^p,$$

where

$$s=y_1+\cdots+y_n$$

and B is a bound of the absolute values $|a_{ij}|$ on U_0 .

By the Lagrange expansion theorem the coefficient b_r of

$$\psi(s) = b_1 B s + b_2 (B s)^2 + \cdots + b_r (B s)^r + \cdots$$

is given by

$$b_r = \frac{1}{r!} \left[\left(\frac{d}{dt} \right)^{r-1} \left(\frac{t}{k(t)} \right)^r \right]_{t=0}$$

where

$$k(t) = t - C \sum_{p=2}^{\infty} \frac{M_p}{p!} (hnt)^p.$$

Hence we have by condition (2)

$$\begin{split} b_{r} &= \frac{1}{r!} \Big[\Big(\frac{d}{dt} \Big)^{r-1} \Big\{ \sum_{q=0}^{\infty} \Big(Chn \sum_{p=1}^{r-1} \frac{M_{p+1}}{(p+1)!} (hnt)^{p} \Big)^{q} \Big\}^{r} \Big]_{t=0} \\ &\leq \frac{1}{r!} \Big[\Big(\frac{d}{dt} \Big)^{r-1} \Big\{ \sum_{q=0}^{\infty} \Big(Chn \sum_{p=1}^{\infty} \Big(H\Big(\frac{M_{r}}{r!} \Big)^{1/(r-1)} hnt \Big)^{p} \Big)^{q} \Big\}^{r} \Big]_{t=0} \\ &= \frac{1}{r!} \Big[\Big(\frac{d}{dt} \Big)^{r-1} \Big\{ \sum_{q=0}^{\infty} (Chn)^{q} \sum_{p=0}^{\infty} \Big(\frac{p+q-1}{p} \Big) \Big(H\Big(\frac{M_{r}}{r!} \Big)^{1/(r-1)} hnt \Big)^{p+q} \Big\}^{r} \Big]_{0} \\ &= \frac{1}{r!} \Big[\Big(\frac{d}{dt} \Big)^{r-1} \Big\{ \sum_{p=0}^{\infty} Chn(Chn+1)^{p-1} \Big(H\Big(\frac{M_{r}}{r!} \Big)^{1/(r-1)} hnt \Big)^{p} \Big\}^{r} \Big]_{0} \\ &\leq \frac{1}{r!} \Big[\Big(\frac{d}{dt} \Big)^{r-1} \sum_{p=0}^{\infty} \Big(\frac{r+p-1}{p} \Big) \Big\{ (Chn+1) H\Big(\frac{M_{r}}{r!} \Big)^{1/(r-1)} hnt \Big\}^{p} \Big]_{0} \end{split}$$

$$= \frac{1}{r} {\binom{2r-2}{r-1}} \{(Chn+1)Hhn\}^{r-1} \frac{M_r}{r!} \\ \le \{4(Chn+1)Hhn\}^{r-1} \frac{M_r}{r!}.$$

We have therefore

$$g_i(y) \ll \frac{1}{4(Chn+1)Hhn} \sum_{p=1}^{\infty} \frac{M_p}{p!} (4B(Chn+1)Hhn)^p s^p.$$

This shows that

 $\begin{array}{ll} (4) & |D^{\alpha}g_{i}(0)| \leq B(4B(Chn+1)Hhn)^{|\alpha|-1}M_{|\alpha|}, |\alpha| \geq 1, \\ \text{proving that the inverse mapping } F^{-1} \text{ is ultradifferentiable of class} \\ \{M_{p}\} \text{ on } V_{0}. \end{array}$

In case F is ultradifferentiable of class (M_p) , the proof is modified as follows. Let h be an arbitrary positive number. Then we can find a constant C and p_0 independent of the arbitrary point 0 in U_0 such that

$$\varphi_i(x) \ll C \sum_{p=2}^{p_0} \frac{M_p}{p!} (ht)^p + \sum_{p=p_0+1}^{\infty} \frac{M_p}{p!} (ht)^p.$$

It follows from condition (3) that if r_0 is sufficiently large, then $CM_p/p! \leq (H(M_r/r!)^{1/(r-1)})^{p-1}$

for $2 \leq p \leq p_0$ and $r \geq r_0$, where *H* is the constant in condition (2).

Hence the coefficient $b_r B^r$ of formal solution $\psi(s)$ of

$$\psi(s) = Bs + C \sum_{p=2}^{p_0} \frac{M_p}{p!} (hn\psi(s))^p + \sum_{p=p_0+1}^{\infty} \frac{M_p}{p!} (hn\psi(s))^p$$

is estimated for $r \ge r_0$ as

functions.

$$b_{r} = \frac{1}{r!} \left[\left(\frac{d}{dt} \right)^{r-1} \left\{ \sum_{q=0}^{\infty} \left(Chn \sum_{p=1}^{p_{0}-1} \frac{M_{p+1}}{(p+1)!} (hnt)^{p} + hn \sum_{p=p_{0}}^{r-1} \frac{M_{p+1}}{(p+1)!} (hnt)^{p} \right)^{q} \right\}^{r} \right]_{0}$$

$$\leq \frac{1}{r!} \left[\left(\frac{d}{dt} \right)^{r-1} \left\{ \sum_{q=0}^{\infty} \left(hn \sum_{p=1}^{\infty} \left(H\left(\frac{M_{r}}{r!} \right)^{1/(r-1)} hnt \right)^{p} \right)^{q} \right\}^{r} \right]_{0}$$

$$\leq (4(hn+1)Hhn)^{r-1} \frac{M_{r}}{m!}.$$

If $r < r_0$, we have (4) for some C. Therefore if a k > 0 is given and we take an h > 0 so that $4(hn+1)Hhn \le k$, then we find that (5) $|D^{\alpha}g_i(0)| \le Ck^{|\alpha|}M_{|\alpha|}, \quad |\alpha| \ge 1$, for a constant C independent of the point 0 in V_0 .

We note that condition (3) is indispensable in the case of class (M_{p}) , because the theorem does not hold for the class (p!) of entire

Now the following theorem is an easy consequence.

The implicit function theorem. If $F = (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$ is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)) from an open neighborhood U of 0 in \mathbb{R}^n into \mathbb{R}^m with $m \leq n$ such that F(0) = 0 and if the Jacobian

No. 3]

$$\frac{\partial(f_1,\cdots,f_m)}{\partial(x_1,\cdots,x_m)} = \det\left(\frac{\partial f_i}{\partial x_j}\right)_{i,j=1,\cdots,m}$$

does not vanish at 0, then there is a unique diffeomorphism $G = (g_1(y_1, \dots, y_n), \dots, g_n(y_1, \dots, y_n))$ of class $\{M_p\}$ (resp. (M_p)) of an open neighborhood V_0 of 0 in \mathbb{R}^n onto an open neighborhood U_0 of 0 in \mathbb{R}^n such that

$$f_i(g_1(y_1, \cdots, y_n), \cdots, g_n(y_1, \cdots, y_n)) = y_i, \qquad i = 1, \cdots, m,$$

and

 $g_j(y_1, \cdots, y_n) = y_j, \qquad j = m+1, \cdots, n.$

We have also

The rank theorem. If $F = (f_1, \dots, f_m)$ is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)) from an open neighborhood U of 0 in \mathbb{R}^n into an open neighborhood V of 0 in \mathbb{R}^m such that F(0)=0 and if the differential $dF: TU \rightarrow TV$ is of constant rank r on U, then there are neighborhoods $U_0 \subset U$ and U_1 of 0 in \mathbb{R}^n and $V_0 \subset V$ and V_1 of 0 in \mathbb{R}^m and diffeomorphisms $\Phi: U_0 \rightarrow U_1$ and $\Psi: V_0 \rightarrow V_1$ of class $\{M_p\}$ (resp. (M_p)) such that $\Phi(0)=0$ and $\Psi(0)=0$ and that $G=\Psi \circ F \circ \Phi^{-1}: U_1 \rightarrow V_1$ maps (x_1, \dots, x_n) to $(x_1, \dots, x_r, 0, \dots, 0)$.

W. Rudin [1] has shown that when M_p satisfies the Denjoy-Carleman condition of non-quasi-analyticity and the logarithmic convexity, the condition

(6) $(M_q/q!)^{1/q} \leq H(M_p/p!)^{1/p}$, $1 \leq q \leq p$, is equivalent to the property that 1/f is ultradifferentiable of class $\{M_p\}$ whenever f is an ultradifferentiable function of class $\{M_p\}$ on R such that $\inf |f(x)| > 0$. Our condition (2) is stronger than but not far from his condition (6).

The Gevrey sequence $p!^s$ clearly satisfies conditions (1) and (2) for $s \ge 1$ and (3) for s > 1. Thus the implicit function theorem holds for Gevrey classes $\{p!^s\}$ for $s \ge 1$ and $(p!^s)$ for s > 1. Since the ultradifferentiable functions of class $\{p!\}$ are exactly the real analytic functions, our theorem includes the implicit function theorem for real analytic mappings.

Reference

 W. Rudin: Division in algebras of infinitely differentiable functions. J. Math. Mech., 11, 797-809 (1962).