2. Studies on Holonomic Quantum Fields. XI

By Mikio Sato, Tetsuji Miwa, and Michio Jimbo
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)

This paper is a direct continuation of our previous work [2]. We retain the same notations as in [2] without mentioning further.

1. In the present case of 2 -dimensional Weyl equation, the orthogonal transformation $T[A]$ is the multiplication by $M(t)=M[A](t)$ where we have set $t=-x^{-}$. It is natural to ask if we can choose $Y_{ \pm}$ and $Z_{ \pm}$to be multiplications by functions, say $Y_{ \pm}(t)$ and $Z_{ \pm}(t)$, respectively. The conditions (2) then require that $Y_{+}(t)$ and $Z_{+}(t)$ (resp. $Y_{-}(t)$ and $Z_{-}(t)$) are holomorphic in the upper (resp. the lower) half complex t-plane. This is the celebrated Riemann-Hilbert problem [1], [3].

Noting that $\lim _{|t| \rightarrow \infty} M(t)=1$, we can normalize $Y_{ \pm}(t), Z_{ \pm}(t)$ so that $\lim _{|t| \rightarrow \infty} Y_{ \pm}(t)=\lim _{|t| \rightarrow \infty} Z_{ \pm}(t)=1$. Then the unique solution is given by

$$
\begin{equation*}
X(t)=\sum_{n=0}^{\infty}(-)^{n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d t_{1} \cdots d t_{n} c_{n}\left(t_{1}, \cdots, t_{n} ; t\right)\left(M\left(t_{1}\right)-1\right) \tag{21}
\end{equation*}
$$

$$
\stackrel{n}{n=0}\left(M\left(t_{n}\right)-1\right),
$$

$$
c_{n}\left(t_{1}, \cdots, t_{n} ; t\right)= \begin{cases}\frac{1}{2 \pi} \frac{-i}{t_{1}-t_{2}-i 0} \cdots \frac{1}{2 \pi} \frac{-i}{t_{n}-t-i 0} & \text { for } X=Y_{+} \\ \frac{1}{2 \pi} \frac{-i}{t-t_{1}-i 0} \cdots \frac{1}{2 \pi} \frac{-i}{t_{n-1}-t_{n}-i 0} & \text { for } X=Y_{-}^{-1} \\ \frac{1}{2 \pi} \frac{i}{t-t_{1}+i 0} \cdots \frac{1}{2 \pi} \frac{i}{t_{n-1}-t_{n}+i 0} & \text { for } X=Z_{+}^{-1} \\ \frac{1}{2 \pi} \frac{i}{t_{1}-t_{2}+i 0} \cdots \frac{1}{2 \pi} \frac{i}{t_{n}-t+i 0} & \text { for } X=Z_{-}\end{cases}
$$

The kernel $\Phi\left(t, t^{\prime}\right)$ of $\Phi[T]$ in (3) reduces to

$$
\begin{equation*}
\Phi\left(t, t^{\prime}\right)=\frac{1}{2 \pi i} \frac{1}{t-t^{\prime}}\left(Y_{-}(t)^{-1} Y_{+}\left(t^{\prime}\right)-Z_{+}(t)^{-1} Z_{-}\left(t^{\prime}\right)\right) \tag{22}
\end{equation*}
$$

In particular, we have

$$
\begin{align*}
\Phi(t, t) & =\frac{1}{2 \pi i}\left(\frac{d Y_{-}(t)^{-1}}{d t} Y_{+}(t)-\frac{d Z_{+}(t)^{-1}}{d t} Z_{-}(t)\right) \tag{23}\\
& =\frac{-1}{2 \pi i}\left(Y_{-}(t)^{-1} \frac{d Y_{+}(t)}{d t}-Z_{+}(t)^{-1} \frac{d Z_{-}(t)}{d t}\right)
\end{align*}
$$

Then from (7) we have the following
Theorem 4. $\tau[T]$ is characterized by

$$
\begin{equation*}
2 \delta \log \tau[T]=\int_{-\infty}^{\infty} d t \operatorname{trace} \delta M(t) \cdot \Phi(t, t) \tag{24}
\end{equation*}
$$

and $\log \tau[1]=0$.
Corollary 4.1. If $M(t)$ is abelian, i.e. $\left[M(t), M\left(t^{\prime}\right)\right]=0$, we have (25) $2 \log \tau[T]=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d t}{2 \pi} \frac{d t^{\prime}}{2 \pi} P \frac{1}{\left(t-t^{\prime}\right)^{2}}$ trace $\log M(t) \log M\left(t^{\prime}\right)$ where P means the principal value.

Corollary 4.2. If $A(x)$ is abelian, i.e. $\left[A(x), A\left(x^{\prime}\right)\right]=0$, we have

$$
\begin{equation*}
\log M(t)=\int_{-\infty}^{\infty} d x^{+} A\left(t, x^{+}\right) \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
2 \log \tau[A]=-\iint d^{2} x d^{2} x^{\prime} P \frac{1}{\left(-x^{-}+x^{\prime-}\right)^{2}} \operatorname{trace} A(x) A\left(x^{\prime}\right) \tag{27}
\end{equation*}
$$

Consider the limiting case where $M(t)$ is given by

$$
\begin{equation*}
\frac{d M(t)}{d t} M(t)^{-1}=-2 \pi i \sum_{\nu=1}^{n} L_{\nu} \delta\left(t-a_{\nu}\right), \quad{ }^{t} L_{\nu}=-L_{\nu} \tag{28}
\end{equation*}
$$

that is, $M(t)=M_{\nu} M_{\nu+1} \cdots M_{n}\left(a_{\nu-1}<t<a_{\nu}, \nu=1, \cdots, n+1 ; a_{0}=-\infty, a_{n+1}\right.$ $=+\infty)$ with $M_{\nu}=\exp \left(2 \pi i L_{\nu}\right)={ }^{t} M_{\nu}^{-1}$. Here we assume $M_{\infty}=\left(M_{1} \cdots\right.$ $\left.M_{n}\right)^{-1}=1$. Then $Y_{ \pm}(t), Z_{ \pm}(t)$ are solutions of differential equations of the form [3] $\frac{d Y_{ \pm}}{d t}=\left(\sum_{\nu=1}^{n} \frac{A_{\nu}}{t-a_{\nu}}\right) Y_{ \pm}, \frac{d Z_{ \pm}}{d t}=\left(\sum_{\nu=1}^{n} \frac{B_{\nu}}{t-a_{\nu}}\right) Z_{ \pm}$. If we denote by d the exterior differentiation with respect to a_{1}, \cdots, a_{n}, formula (24) gives

$$
\begin{align*}
2 d \log \tau[T]= & \int_{-\infty}^{+\infty} \frac{d t}{2 \pi i} \operatorname{trace}\left\{d M(t) \cdot M(t)^{-1}\right. \tag{29}\\
& \times\left(-\lim _{\varepsilon(t) \backslash 0} Y_{+}(t+i \varepsilon(t))^{-1} \frac{d Y_{+}}{d t}(t+i \varepsilon(t))\right. \\
& \left.\left.+\lim _{\eta(t) \backslash 0} Z_{-}(t-i \eta(t))^{-1} \frac{d Z_{-}}{d t}(t-i \eta(t))\right)\right\} \\
= & \frac{1}{2} \sum_{\mu \neq \nu} \operatorname{trace} A_{\mu} A_{\nu} \frac{d a_{\mu}-d a_{\nu}}{a_{\mu}-a_{\nu}} \\
& +\sum_{\nu=1}^{n} d a_{\nu} \lim _{\varepsilon\left(a_{\nu}\right) \backslash 0} \operatorname{trace} L_{\nu}^{2} \cdot \frac{1}{i \varepsilon\left(a_{\nu}\right)} \\
& +\frac{1}{2} \sum_{\mu \neq \nu} \operatorname{trace} B_{\mu} B_{\nu} \frac{d a_{\mu}-d a_{\nu}}{a_{\mu}-a_{\nu}} \\
& +\sum_{\nu=1}^{n} d a_{\nu} \lim _{\eta\left(a_{\nu}\right) \backslash 0} \operatorname{trace} L_{\nu}^{2} \cdot \frac{1}{-i \eta\left(a_{\nu}\right)} .
\end{align*}
$$

After subtracting the normalization terms (the second and fourth terms), we thus obtain Theorem 2.4.7 in [3] (see also [1], [4]) for the operator $\varphi \otimes \varphi^{-1}, \varphi=\varphi\left(a_{1} ; L_{1}\right) \cdots \varphi\left(a_{n} ; L_{n}\right)$. This subtraction is unnecessary if we choose $\varepsilon(t)=\eta(t)$. Note that each of Y_{+}- and Z_{-}-terms in (29) produces $d \log \tau$ for φ and φ^{-1} respectively.
2. Let $M(t)=\sum_{\nu=-\infty}^{\infty} M_{\nu} t^{\nu}$ be an $O(m)$-valued real analytic function
defined on $S^{1}=\{t \in \boldsymbol{C}| | t \mid=1\}$. If we start from $S^{1} \times \boldsymbol{R}=\left\{\left(t, x^{+}\right) \mid t \in S^{1}\right.$, $\left.x^{+} \in \boldsymbol{R}\right\}$ instead of $X^{\text {Min }}$ in $\S 2$, we obtain analogous results, in particular, for the functional $\tau\left[T_{M}\right]$ where T_{M} means the multiplication by $M(t)$. The kernel functions of E_{+}and E_{-}are given by

$$
\begin{gather*}
E_{+}\left(t, t^{\prime}\right) d t^{\prime}=\underset{\left|t^{\prime}\right|>|t|}{b} \cdot \frac{1}{t^{\prime}-t} \frac{d t^{\prime}}{2 \pi i}=\sum_{n \geqq 0}\left(\frac{t}{t^{\prime}}\right)^{n} \frac{d t^{\prime}}{2 \pi i t^{\prime}}, \tag{30}\\
E_{-}\left(t, t^{\prime}\right) d t^{\prime}=\underset{|t|>\left|t^{\prime}\right|}{b \cdot v} \frac{1}{t-t^{\prime}} \frac{d t^{\prime}}{2 \pi i}=\sum_{n \geq 1}\left(\frac{t^{\prime}}{t}\right)^{n} \frac{d t^{\prime}}{2 \pi i t^{\prime}} \tag{31}
\end{gather*}
$$

where b.v. signifies the boundary value. Roughly speaking, $\operatorname{det}\left(E_{+}+E_{-} T_{M}\right)$ means the determinant of the following matrix of infinite size (the left hand side of (32)) :

$$
\left(\begin{array}{cccc}
M_{0} & M_{-1} & M_{-2} & \cdots \tag{32}\\
M_{1} & M_{0} & M_{-1} & \cdots \\
M_{2} & M_{1} & M_{0} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right), \quad M^{(N)}=\left(\begin{array}{cccc}
M_{0} & M_{-1} & \cdots & M_{-N+1} \\
M_{1} & M_{0} & \cdots & M_{-N+2} \\
\vdots & \vdots & & \vdots \\
M_{N-1} & M_{N-2} & \cdots & M_{0}
\end{array}\right) .
$$

The determinant of this type is called the Toeplitz determinant. In the sequel we shall give an explicit formula for $\lim _{N \rightarrow \infty} \operatorname{det} M^{(N)}$ where $M^{(N)}$ is given by the right hand side of (32).

Let $Y_{+}(t)$ and $Z_{+}(t)$ (resp. $Y_{-}(t)$ and $\left.Z_{-}(t)\right)$ be holomorphic and invertible functions defined on $\{t \in C||t| \leqq 1\}$ (resp. $\{t \in C||t| \geqq 1\}$), satisfying $M(t)=Y_{+}(t)^{-1} Y_{-}(t)=Z_{-}(t)^{-1} Z_{+}(t)$. Let $c[M]$ be the functional of M characterized by $c[1]=1$ and

$$
\begin{equation*}
\delta \log c[M]=\int \operatorname{trace} \delta M(t) \cdot M(t)^{-1} \frac{d t}{2 \pi i t} \tag{33}
\end{equation*}
$$

Explicitly written down,
(34) $c[M]=\operatorname{det} Y_{+}(0)^{-1} \cdot \operatorname{det} Y_{-}(\infty)=\operatorname{det} Z_{-}(\infty)^{-1} \cdot \operatorname{det} Z_{+}(0)$.

Then the limit

$$
\begin{equation*}
\sigma[M]=\lim _{N \rightarrow \infty} c[M]^{-N} \operatorname{det} M^{(N)} \tag{35}
\end{equation*}
$$

exists and satisfies

$$
\begin{equation*}
\sigma[M]=\sigma\left[M^{-1}\right] . \tag{36}
\end{equation*}
$$

Theorem 5. The Toeplitz determinant $\sigma[M]$ is given by

$$
\begin{equation*}
\sigma[M]^{2}=\tau\left[T_{M}\right] . \tag{37}
\end{equation*}
$$

Hence $\sigma[M]$ is characterized by $\sigma[1]=1$ and
(38) $\delta \log \sigma[M]$

$$
=-\oint_{|t|=1} \frac{d t}{2 \pi i} \operatorname{trace} \delta M(t)\left(Y_{-}(t)^{-1} \frac{d Y_{+}(t)}{d t}-Z_{+}(t)^{-1} \frac{d Z_{-}(t)}{d t}\right) .
$$

Set

$$
\begin{align*}
\hat{\omega}_{n}\left(\nu_{1}, \cdots, \nu_{n}\right)= & \max \left(0, \nu_{1}, \nu_{1}+\nu_{2}, \cdots, \nu_{1}+\cdots+\nu_{n}\right) \tag{39}\\
& -\min \left(0, \nu_{1}, \nu_{1}+\nu_{2}, \cdots, \nu_{1}+\cdots+\nu_{n}\right), \\
\omega_{n}\left(t_{1}, \cdots, t_{n}\right)= & \left\{-\omega_{n}^{(+)}\left(t_{1}, \cdots, t_{n} ; t\right)\right. \tag{40}\\
& \left.-\omega_{n}^{(-)}\left(t_{1}, \cdots, t_{n} ; t\right)+\omega_{n}^{(0)}\left(t_{1}, \cdots, t_{n} ; t\right)\right\}\left.\right|_{t=t_{1}},
\end{align*}
$$

$$
\begin{gather*}
\omega_{n}^{(\pm)}\left(t_{1}, \cdots, t_{n} ; t\right)=E_{ \pm}\left(t_{1}, t_{2}\right) \cdots E_{ \pm}\left(t_{n}, t\right) d t_{1} \cdots d t_{n}, \tag{41}\\
\omega_{n}^{(0)}\left(t_{1}, \cdots, t_{n} ; t\right)=\delta\left(t_{1}, t_{2}\right) \cdots \delta\left(t_{n}, t\right) d t_{1} \cdots d t_{n} . \tag{42}
\end{gather*}
$$

Here we have set $\delta\left(t, t^{\prime}\right)=E_{+}\left(t, t^{\prime}\right)+E_{-}\left(t, t^{\prime}\right)$.
Making use of the infinite series for $Y_{ \pm}(t)$ and $Z_{ \pm}(t)$ analogous to (21) we obtain the following

Corollary 5.1.

$$
\begin{align*}
\sigma[M]= & \sum_{n=1}^{\infty} \frac{(-)^{n}}{n} \sum_{\nu_{1}+\cdots+\nu_{n}=0} \hat{n}_{n}\left(\nu_{1}, \cdots, \nu_{n}\right) \operatorname{trace}\left(M_{\nu_{1}}-\delta_{\nu_{1} 0}\right) \tag{43}\\
& \times \cdots\left(M_{\nu_{n}}-\delta_{\nu_{n} 0}\right), \\
= & \sum_{n=1}^{\infty} \frac{(-)^{n}}{n} \oint_{\left|t_{1}\right|=1} \cdots \oint_{\left|t_{n}\right|=1} \omega_{n}\left(t_{1}, \cdots, t_{n}\right) \operatorname{trace}\left(M\left(t_{1}\right)-1\right) \\
& \times \cdots\left(M\left(t_{n}\right)-1\right) .
\end{align*}
$$

Corollary 5.2. If $M(t)$ is abelian, we have

$$
\begin{equation*}
\log \sigma[M]=-\oint_{|t|=1} \operatorname{trace} \log Y_{-}(t) \frac{d}{d t} \log Y_{+}(t) \frac{d t}{2 \pi i} \tag{44}
\end{equation*}
$$

Remark 1. (38)-(44) are valid without the assumption that ${ }^{t} M(t)^{-1}$ $=M(t)$.

Remark 2. In the abelian case, if we set $\log M(t)=\sum_{n=-\infty}^{\infty} K_{n} t^{n}$, we have $\log c[M]=\operatorname{trace} K_{0}$ and $\log \sigma[M]=$ trace $\sum_{n=1}^{\infty} n K_{n} K_{-n}$. This is the well-known Szegö's theorem [5].

References

[1] M. Sato, T. Miwa, and M. Jimbo: Proc. Japan Acad., 53A, 6-10, 147-152, 153-158, 183-185, 219-224 (1977) ; 54A, 1-5, 36-41 (1978).
[2] -: Ibid., 54A, 309-313 (1978).
[3] -: RIMS preprint, no. 248, Kyoto Univ. (1978) ; ibid., nos. 260, 263 (1978).
[4] M. Jimbo, T. Miwa, and M. Sato: Ibid., no. 246, Kyoto Univ. (1978).
[5] G. Szegö: Commun. Seminar Math. Univ. Lund. suppl., dédié à Marcel Riesz, no. 228 (1952).

