14. Non-Immersion and Non-Embedding Theorems for Complex Grassmann Manifolds*)

By Tamio Sugawara
Department of Mathematics, Kyushu University
(Communicated by Kunihiko Kodaira, M. J. a., Feb. 13, 1979)

Introduction. The purpose of the present paper is to prove nonimmersion and non-embedding theorems for the complex Grassmann manifolds $G_{k, n-k}=U(n) / U(k) \times U(n-k)$ by making use of an index theorem due to Atiyah-Hirzebruch [1]. We denote by $X \subseteq R^{q}$ (or $X \subset R^{q}$) the existence of immersion (or embedding) of a differentiable manifold X into the Euclidean space R^{q} respectively. Let $\alpha(q)$ denote the number of 1's in the dyadic expansion of an integer q. Then our results are stated as follows:

Main Theorem. Let $2 m=2 k(n-k)$ be the dimension of $G_{k, n-k}$ and let $r=\sum_{j=1}^{k}(\alpha(n-j)-\alpha(j-1))$. Then,
(a) (i) $G_{k, n-k} \not \subset R^{4 m-2 r}$, (ii) $G_{k, n-k} \not \subset R^{4 m-2 r-1}$.
(b) If n is odd, then $m=k(n-k)$ is even and
(i) if $r \equiv 3(\bmod 4)$ then $G_{k, n-k} \not \subset R^{4 m-2 r+2}$,
(ii) if $r \equiv 2$ or $3(\bmod 4)$ then $G_{k, n-k} \nsubseteq R^{4 m-2 r+1}$, if $r \equiv 1(\bmod 4)$ then $G_{k, n-k} \nsubseteq R^{4 m-2 r}$.
These are generalizations of results for complex projective spaces investigated by Atiyah-Hirzebruch [1], Sanderson-Schwarzenberger [5] and Mayer [4] and of the results for some complex Grassmann manifolds obtained by Sugawara [6].

This paper is arranged as follows. In § 1, the index theorem for immersion and embedding due to Atiyah-Herzebruch [1] and Mayer [4] are recalled. $\S 2$ is devoted to show the computability of some Todd genus for complex homogeneous spaces G / U. We prove Main Theorem in $\S 3$ and exhibit Table I of r for some n and k.

The author wishes to express his hearty gratitude to Professor M. F. Atiyah for enlightening discussions.
§ 1. Index theorems. Let $X^{2 m}$ be a closed connected oriented differentiable manifold of $2 m$ dimension. Let $\left\{\hat{A}_{j}\left(p_{1}, p_{2}, \cdots, p_{j}\right)\right\}$ be the multiplicative sequence of polynomials [3, § 1] with $(z / 2) / \sinh (z / 2)$ as characteristic power series and let $\hat{\mathcal{A}}(X)$ be the cohomology class $\sum_{j=0}^{[m / 2]} A_{j}\left(p_{1}(\xi), \cdots, p_{j}(\xi)\right)$ of the tangent bundle $\xi=\tau(X)$ of X. For any $z \in H^{*}(X, Q)$ and $d \in H^{2}(X, Q)$, we define $\hat{A}(X, d, z)=\left\{z e^{d} \hat{\mathcal{A}}(X)\right\}[X]$. Let

[^0]Table I

$\operatorname{ch}(X)$ be the subring of $H^{*}(X, Q)$, the image of Chern character $\operatorname{ch}: K(X) \rightarrow H^{*}(X, Q)$. For an element $z=\sum_{i=0}^{m} z_{i} \in \operatorname{ch}(X)$ with $z_{i} \in H^{2 i}(X, Q)$, we write $z^{(t)}=\sum_{i=0}^{m} z_{i} t^{i}$ where t is an indeterminate. The Hilbert polynomial $H(t)$ with respect to $z \in c h(X)$ and $d \in H^{2}(X, Z)$ is defined (Atiyah-Hirzebruch $[1, \S 2.5]$) as follows:

$$
\begin{equation*}
H(t)=\hat{A}\left(X, d / 2, z^{(t)}\right)=\left\{z^{(t)} e^{d / 2} \hat{\mathcal{M}}(X)\right\}[X] . \tag{1.1}
\end{equation*}
$$

We denote by $\nu_{p}(k)$ the (positive or negative) exponent of a prime p in a rational number k, that is, $k=\Pi_{p} p^{\nu_{p}(k)}$. For the next theorem, see Atiyah-Hirzebruch [1, §2.6], Sanderson-Schwarzenberger [5, Theorem 4] and Mayer [4, § 4.3].
and let $H(t)$ be the Hilbert polynomial with respect to $z \in \operatorname{ch}(X)$ and $d \in H^{2}(X, Z) . \quad$ Let $r=2 m+\nu_{2}(H(1 / 2))$, then
(i) $X \not \subset R^{4 m-2 r}$, (ii) $X \not \subset R^{4 m-2 r-1}$.

When the dimension of X is divisible by four, Mayer [4, §4.3] improved above theorem. Let $\operatorname{ch} O(X)$ be the subring of $\operatorname{ch}(X)$, the image of Chern character composed with the complexification $c ; K O(X)$ $\rightarrow K(X)$.

Theorem 1.2. Let $2 m$ be the dimension of X with m even and let $H(t)=\hat{A}\left(X, 0, z^{(t)}\right)$ be the Hilbert polynomial with respect to $z \in \operatorname{ch} O(X)$ and $d=0$. Let $r=2 m+\nu_{2}(H(1 / 2))$, then
(i) if $r \equiv 3(\bmod 4)$ then $X \nsubseteq R^{4 m-2 r+2}$
(ii) if $r \equiv 2$ or $3(\bmod 4)$ then $X \nsubseteq R^{4 m-2 r+1}$ if $r \equiv 1 \quad(\bmod 4)$ then $X \not \subset R^{4 m-2 r}$
If X is moreover endowed with an almost complex structure, then the Todd class $\mathscr{I}(X)$ can be defined as the cohomology class $\sum_{j=0}^{m} T_{j}\left(c_{1}(\xi)\right.$, $\left.\cdots, c_{j}(\xi)\right)$ of the tangent bundle $\xi=\tau(X)$ where $\left\{T_{j}\left(c_{1}, \cdots, c_{j}\right)\right\}$ is the Todd multiplicative sequence of polynomial [3, §1] with $x /\left(1-e^{-x}\right)$ as its characteristic power series. In this case choosing $d=c_{1}(X)$ the first Chern class of X, (1.1) is rewritten as

$$
\begin{equation*}
H(t)=\left\{z^{(t)} \mathscr{I}(X)\right\}[X] \tag{1.2}
\end{equation*}
$$

since $\mathscr{I}(\xi)=\exp \left(c_{1}(\xi) / 2\right) \hat{\mathcal{A}}(\xi)$ holds for any complex vector bundle ξ.
§2. Complex homogeneous space $\boldsymbol{G} / \boldsymbol{U}$. Let G be a compact connected Lie group and U its closed subgroup of the centralizer of a torus of G. Then U contains a maximal torus T of G and by H. C. Wang G / U is a homogeneous complex manifold (Borel-Hirzebruch [2, § 13.5]). Let V be the universal covering space of T and $\pi: V \rightarrow T$ be the projection. Let $\Gamma=\pi^{-1}(e)$ be the lattice point set where $e \in T$ is the unit element. Then the subgroup of the dual space $V^{*}=\operatorname{Hom}(V, R)$, consisting of all the functions $\varphi \in V^{*}$ which takes the value in the integers $Z \subset R$ on Γ, is identified with the cohomology group $H^{1}(T, Z)$ and the latter is identified with the cohomology group $H^{2}(G / T, Z)$ by the negative transgression. Hence roots or weights of any representation of G are regarded as elements of $H^{2}(G / T, Z)$ [2, § 10]. The following two theorems play the essential role in computation of $H(t)$.

Theorem 2.1 (Borel-Hirzebruch [2, § 24.7]). Let Ψ be a set of roots giving the complex structure of G / U. Let β be a weight orthogonal to the roots of U and $(\beta, \alpha)>0$ for all $\alpha \in \Psi$, where (,) denotes the bilinear form induced from the Killing form. Then the Todd genus $T(G / U, \beta)=\left\{e^{\beta} \mathcal{I}(G / U)\right\}[G / U]$ is equal to the dimension of the irreducible representation with the highest weight β.

Theorem 2.2 (Weyl's dimension formula). Let V be an irreducible representation space with the highest weight β. Then

$$
\operatorname{dim} V=\prod_{\alpha>0}(\beta+\delta, \alpha) / \prod_{\alpha>0}(\delta, \alpha) \quad \delta=\sum_{\alpha>0} \alpha / 2
$$

Combining these two theorems, the Hilbert polynomial $H(t)$ with respect to $z=e^{\beta}$ and $d=c_{1}(X)$ is obtained as

$$
\begin{equation*}
H(t)=\prod_{\alpha \in W}(t \beta+\delta, \alpha) / \prod_{\alpha \in W}(\delta, \alpha) \tag{2.1}
\end{equation*}
$$

where the multiplication runs through over the positive complementary roots $\alpha \in \Psi$, since $(\beta, \alpha)=0$ if α is a root of U by orthogonality.
§3. Complex Grassmann manifolds. In this section, we give the proof of Main Theorem. Let $U(k) \times U(n-k) \rightarrow U(n) \rightarrow G_{k, n-k}$ be the natural principal bundle and let $\zeta_{1} \oplus \zeta_{2}$ be the associated vector bundle. Denoting $c_{i}=c_{i}\left(\zeta_{1}\right)$ (or $c_{i}^{\prime}=c_{i}\left(\zeta_{2}\right)$) the i-th Chern class of ζ_{1} (or ζ_{2}) respectively, we have

$$
H^{*}\left(G_{k, n-k}, Z\right)=Z\left[c_{1}, c_{2}, \cdots, c_{k}, c_{1}^{\prime}, \cdots, c_{n-k}^{\prime}\right] / J^{+}
$$

where J^{+}is an ideal generated by the elements $\left\{\sum_{i+j=k} c_{i} c_{j}^{\prime} ; k>0\right\}$.
Let $F(n)$ be the complex flag manifold $U(n) / T^{n}$ where T^{n} is a maximal torus of $U(n)$. Let $T^{n} \rightarrow U(n) \rightarrow F(n)$ be the natural principal bundle and let $\xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n}$ be the associated vector bundle. Denoting $x_{i}=c_{1}\left(\xi_{i}\right)$ the first Chern class of ξ_{i}, we have

$$
H^{*}(F(n), Z)=Z\left[x_{1}, x_{2}, \cdots, x_{n}\right] / I^{+}
$$

where I^{+}is generated by all symmetric polynomials of positive degree in $x_{1}, x_{2}, \cdots, x_{n}$.

Let $\pi: F(n) \rightarrow G_{k, n-k}$ be the natural fibre bundle with the fibre $F(k)$ $\times F(n-k)$. Then $\pi^{*}: H^{*}\left(G_{k, n-k}, Z\right) \rightarrow H^{*}(F(n), Z)$ is a monomorphism and $\pi^{*}\left(c_{i}\right)$ (or $\pi^{*}\left(c_{i}^{\prime}\right)$) is the i-th elementary symmetric polynomial in $x_{1}, x_{2}, \cdots, x_{k}$ (or in x_{k+1}, \cdots, x_{n}) respectively (Borel-Hirzebruch [2, § 16.2]).

Consider the k-th exterior product ${ }_{\wedge}^{k} \zeta_{1}$ of ζ_{1}. Since ζ_{1} is a $U(k)$ bundle, $\wedge^{k} \zeta_{1}$ is a line bundle and its first Chern class satisfies

$$
\pi^{*}\left(c_{1}\left({ }_{\wedge}^{k} \zeta_{1}\right)\right)=x_{1}+x_{2}+\cdots+x_{k}
$$

The Hilbert polynomial with respect to $z=\operatorname{ch}\left({ }^{k} \zeta_{1}\right)=\exp \left(x_{1}+\cdots+x_{k}\right)$ and $d=c_{1}\left(G_{k, n-k}\right)$ is

$$
\begin{equation*}
H(t)=\left\{\exp \left(t\left(x_{1}+\cdots+x_{k}\right)\right) \mathscr{I}\left(G_{k, n-k}\right)\right\}\left[G_{k, n-k}\right] \tag{3.1}
\end{equation*}
$$

By the elementary Lie algebraic theory, the set of the positive roots of $U(n)$ is $\left\{e_{i}-e_{j} ; 1 \leqq i<j \leqq n\right\}$. Note that the elements e_{1}, e_{2}, \cdots, $e_{n} \in V^{*}$ are identified with $-x_{1},-x_{2}, \cdots,-x_{n} \in H^{2}(F(n), Z)$ (see §2). The bilinear form is given by

$$
\begin{equation*}
\left(e_{i}, e_{j}\right)=\delta_{i j} \quad(\text { Kronecker delta }) \tag{3.2}
\end{equation*}
$$

Now we are ready to prove Main Theorem. For the part (a), by Theorem 1.1, it is sufficient to show

$$
\begin{equation*}
r=2 m+\nu_{2}\left(H\left(\frac{1}{2}\right)\right)=\sum_{j=1}^{k}(\alpha(n-j)-\alpha(j-1)) \tag{3.3}
\end{equation*}
$$

By (2.1) and (3.1), $H(1 / 2)$ is equal to
(3.4)

$$
\prod_{k+1 \leq j \leq n}^{1 \leq i \leq k}\left((\beta / 2)+\delta, e_{i}-e_{j}\right) / \prod_{k+1 \leq j \leq n}^{1 \leq i \leq k}\left(\delta, e_{i}-e_{j}\right)
$$

where $\beta=-\left(e_{1}+e_{2}+\cdots+e_{k}\right)$ and $\delta=\left(\sum_{1 \leq i<j \leq n}\left(e_{i}-e_{j}\right) / 2\right.$. Since $\left(\delta, e_{i}-e_{j}\right)=j-i$ and

$$
\left(\beta, e_{i}-e_{j}\right)= \begin{cases}1 & \text { if } 1 \leqq i \leqq k \text { and } k+1 \leqq j \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

hold by (3.2), we get

$$
H\left(\frac{1}{2}\right)=\prod_{j=1}^{k}\left(\frac{1}{2}+n-j\right)_{n-k} / \prod_{j=1}^{k}(n-j)_{n-k}
$$

where $(s)_{q}$ denotes the multiplication $s(s-1) \cdots(s-q+1)$ for a real number s and a positive integer q. Note that if s is also an integer with $s \geqq q$, then $(s)_{q}=s!/(s-q)!$ and making use of well known elementary number theoretical formula $s=\nu_{2}(s!)+\alpha(s)$, we obtain $\nu_{2}\left((s)_{q}\right)=q$ $-\alpha(s)+\alpha(s-q)$. Thus we have

$$
\begin{aligned}
& \nu_{2}\left(\prod_{j=1}^{k}\left(\frac{1}{2}+n-j\right)_{n-k}\right)=-k(n-k) \\
& \nu_{2}\left(\prod_{j=1}^{k}(n-j)_{n-k}\right)=k(n-k)-\sum_{j=1}^{k}(\alpha(n-j)-\alpha(k-j))
\end{aligned}
$$

and hence (3.3) is obtained.
Preceding the proof of the part (b) of Main Theorem, we prepare a lemma. Let $\hat{A}(X)=\hat{A}(X, 0,1)=\hat{\mathcal{A}}(X)[X]$ be the \hat{A}-genus.

Lemma 3.1. Let $z=\operatorname{ch}\left(\bigwedge_{\wedge}^{k} \zeta_{1}\right)$ and $d=c_{1}\left(G_{k, n-k}\right)$. If n is odd, then

$$
\nu_{2}\left(\hat{A}\left(G_{k, n-k}, d / 2, z^{(1 / 2)}\right)=\nu_{2}\left(\hat{A}\left(G_{k, n-k}\right)\right) .\right.
$$

Proof. Since $\left.\hat{A}(X)=\hat{\mathcal{A}}(X)[X]=\left\{\exp \left(-c_{1}(X) / 2\right)\right) \mathscr{I}(X)\right\}[X]$, substituting $X=G_{k, n-k}$, we can use Theorems 2.1 and 2.2 again. Note that the first Chern class $c_{1}\left(G_{k, n-k}\right)$ is obtained as $-n c_{1}$ by BorelHirzebruch [2, § 16.2] where $\pi^{*}\left(c_{1}\right)=-\left(x_{1}+\cdots+x_{k}\right) \in H^{2}(F(n), Z)$. Hence $\hat{A}\left(G_{k, n-k}\right)$ is equal to (3.4) with $\beta=n\left(e_{1}+e_{2}+\cdots+e_{k}\right)$ and the lemma follows.

Now (b) follows from Lemma 3.1 and Theorem 1.2 with

$$
z=1 \in \operatorname{ch} O\left(G_{k, n-k}\right) .
$$

References

[1] M. F. Atiyah and F. Hirzebruch: Quelque théorèmes de non-plongement pour les variétés différentiables. Bull. Soc. Math. France, 87, 383-396 (1959).
[2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, II, III. Amer. J. Math., 80, 458-538 (1958) ; 81, 315-382 (1959) ; 82, 491-504 (1960).
[3] F. Hirzebruch: Topological Methods in Algebraic Geometry. 3rd ed., Springer (1966).
[4] K. H. Mayer: Elliptische Differential operatoren und Ganzzahligkeitssätze für Charakteristische Zahlen. Topology, 4, 295-313 (1965).
[5] B. J. Sanderson and R. L. E. Schwarzenberger: Non-immersion theorems
for differentiable manifolds. Proc. Camb. Phil. Soc., 59, 319-322 (1963).
[6] T. Sugawara: Immersion and embedding problem for complex flag manifolds. Osaka J. Math., 15, 117-135 (1978).

[^0]: *) Dedicated to Professor Atuo Komatu for his 70th birthday.

