Non-Immersion and Non-Embedding Theorems for Complex Grassmann Manifolds^{*}

By Tamio SUGAWARA

Department of Mathematics, Kyushu University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1979)

Introduction. The purpose of the present paper is to prove nonimmersion and non-embedding theorems for the complex Grassmann manifolds $G_{k,n-k} = U(n)/U(k) \times U(n-k)$ by making use of an index theorem due to Atiyah-Hirzebruch [1]. We denote by $X \subseteq \mathbb{R}^q$ (or $X \subset \mathbb{R}^q$) the existence of immersion (or embedding) of a differentiable manifold X into the Euclidean space \mathbb{R}^q respectively. Let $\alpha(q)$ denote the number of 1's in the dyadic expansion of an integer q. Then our results are stated as follows:

Main Theorem. Let 2m = 2k(n-k) be the dimension of $G_{k,n-k}$ and let $r = \sum_{j=1}^{k} (\alpha(n-j) - \alpha(j-1))$. Then,

- (a) (i) $G_{k,n-k} \not\subset R^{4m-2r}$, (ii) $G_{k,n-k} \not\subseteq R^{4m-2r-1}$.
- (b) If n is odd, then m = k(n-k) is even and
- (i) if $r \equiv 3 \pmod{4}$ then $G_{k,n-k} \not\subset R^{4m-2r+2}$,
- (ii) if $r \equiv 2$ or 3 (mod 4) then $G_{k,n-k} \not\subseteq R^{4m-2r+1}$, if $r \equiv 1 \pmod{4}$ then $G_{k,n-k} \not\subseteq R^{4m-2r}$.

These are generalizations of results for complex projective spaces investigated by Atiyah-Hirzebruch [1], Sanderson-Schwarzenberger [5] and Mayer [4] and of the results for some complex Grassmann manifolds obtained by Sugawara [6].

This paper is arranged as follows. In § 1, the index theorem for immersion and embedding due to Atiyah-Herzebruch [1] and Mayer [4] are recalled. § 2 is devoted to show the computability of some Todd genus for complex homogeneous spaces G/U. We prove Main Theorem in § 3 and exhibit Table I of r for some n and k.

The author wishes to express his hearty gratitude to Professor M. F. Atiyah for enlightening discussions.

§ 1. Index theorems. Let X^{2m} be a closed connected oriented differentiable manifold of 2m dimension. Let $\{\hat{A}_j(p_1, p_2, \dots, p_j)\}$ be the multiplicative sequence of polynomials [3, § 1] with $(z/2)/\sinh(z/2)$ as characteristic power series and let $\hat{\mathcal{A}}(X)$ be the cohomology class $\sum_{j=0}^{\lfloor m/2 \rfloor} A_j(p_1(\xi), \dots, p_j(\xi))$ of the tangent bundle $\xi = \tau(X)$ of X. For any $z \in H^*(X, Q)$ and $d \in H^2(X, Q)$, we define $\hat{A}(X, d, z) = \{ze^d \hat{\mathcal{A}}(X)\}[X]$. Let

^{*)} Dedicated to Professor Atuo Komatu for his 70th birthday.

T. SUGAWARA

							Tab	le I								
$\binom{k}{n}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2	1															
3	1															
4	2	2	2						r=	$=\sum_{k=1}^{k} (\alpha$	(n-j)	α(j-	- 1))			
5	1	2	2	1						<i>j</i> ≕ 1						
6	2	2	3	2	2											
7	2	3	3	3	3	2										
8	3	4	5	4	5	4	3									
9	1	3	4	4	$\setminus 4$	4	3	1								
10	2	2	4	4	`5	4	4	2	2							
11	2	3	3	4	5	\ ⁵	4	3	3	2						
12	3	4	5	4	6	6	6	4	5	4	3					
13	2	4	5	5	5	6	6	5	5	5	4	2				
14	3	4	6	6	7	6	7	6	7	6	6	4	3			
15	3	5	6	7	8	8	7 \	7	8	8	7	6	5	3		
16	4	6	8	8	10	10	10	8	10	10	10	8	8	6	4	
17	1	4	6	7	8	9	9	8	\ ⁸	9	9	8	7	6	4	
18	2	2	5	6	8	8	9	8	` 9	8	9	8	8	6	5	
19	2	3	3	5	7	8	8	8	9 \	\ ⁹	8	8	8	7	5	
20	3	4	5	4	7	8	9	8	10	10	10	8	9	8	7	
21	2	4	5	5	5	7	8	8	9	10	\setminus^{10}	9	8	8	7	
22	3	4	6	6	7	6	8	8	10	10	11	10	10	8	8	
23	3	5	6	7	8	8	7	8	10	11	11	\setminus^{11}	11	10	8	
24	4	6	8	8	10	10	10	8	11	12	13	12	13	12	11	
25	2	5	7	8	9	10	10	9	9	11	12	12	12	12	11	

ch(X) be the subring of $H^*(X, Q)$, the image of Chern character $ch: K(X) \to H^*(X, Q)$. For an element $z = \sum_{i=0}^{m} z_i \in ch(X)$ with $z_i \in H^{2i}(X, Q)$, we write $z^{(t)} = \sum_{i=0}^{m} z_i t^i$ where t is an indeterminate. The Hilbert polynomial H(t) with respect to $z \in ch(X)$ and $d \in H^2(X, Z)$ is defined (Atiyah-Hirzebruch [1, §2.5]) as follows:

(1.1) $H(t) = \hat{A}(X, d/2, z^{(t)}) = \{z^{(t)}e^{d/2}\hat{\mathcal{A}}(X)\}[X].$

We denote by $\nu_p(k)$ the (positive or negative) exponent of a prime p in a rational number k, that is, $k = \prod_p p^{\nu_p(k)}$. For the next theorem, see Atiyah-Hirzebruch [1, §2.6], Sanderson-Schwarzenberger [5, Theorem 4] and Mayer [4, §4.3].

and let H(t) be the Hilbert polynomial with respect to $z \in ch(X)$ and $d \in H^2(X, Z)$. Let $r=2m+\nu_2(H(1/2))$, then

(i) $X \not\subset R^{4m-2r}$, (ii) $X \not\subseteq R^{4m-2r-1}$.

When the dimension of X is divisible by four, Mayer [4, § 4.3] improved above theorem. Let chO(X) be the subring of ch(X), the image of Chern character composed with the complexification c; $KO(X) \rightarrow K(X)$.

Theorem 1.2. Let 2m be the dimension of X with m even and let $H(t) = \hat{A}(X, 0, z^{(t)})$ be the Hilbert polynomial with respect to $z \in chO(X)$ and d=0. Let $r=2m+\nu_2(H(1/2))$, then

- (i) if $r \equiv 3 \pmod{4}$ then $X \not\subseteq R^{4m-2r+2}$
- (ii) if $r \equiv 2 \text{ or } 3 \pmod{4}$ then $X \not\subseteq R^{4m-2r+1}$

if $r \equiv 1 \pmod{4}$ then $X \not\subseteq R^{4m-2r}$

If X is moreover endowed with an almost complex structure, then the Todd class $\mathcal{D}(X)$ can be defined as the cohomology class $\sum_{j=0}^{m} T_j(c_1(\xi), \cdots, c_j(\xi))$ of the tangent bundle $\xi = \tau(X)$ where $\{T_j(c_1, \cdots, c_j)\}$ is the Todd multiplicative sequence of polynomial [3, § 1] with $x/(1-e^{-x})$ as its characteristic power series. In this case choosing $d = c_1(X)$ the first Chern class of X, (1.1) is rewritten as

(1.2) $H(t) = \{z^{(t)} \mathcal{I}(X)\}[X]$

since $\mathcal{I}(\xi) = \exp(c_1(\xi)/2)\hat{\mathcal{A}}(\xi)$ holds for any complex vector bundle ξ .

§2. Complex homogeneous space G/U. Let G be a compact connected Lie group and U its closed subgroup of the centralizer of a torus of G. Then U contains a maximal torus T of G and by H. C. Wang G/U is a homogeneous complex manifold (Borel-Hirzebruch [2, §13.5]). Let V be the universal covering space of T and $\pi: V \rightarrow T$ be the projection. Let $\Gamma = \pi^{-1}(e)$ be the lattice point set where $e \in T$ is the unit element. Then the subgroup of the dual space $V^* = \text{Hom}(V, R)$, consisting of all the functions $\varphi \in V^*$ which takes the value in the integers $Z \subset R$ on Γ , is identified with the cohomology group $H^1(T, Z)$ and the latter is identified with the cohomology group $H^2(G/T, Z)$ by the negative transgression. Hence roots or weights of any representation of G are regarded as elements of $H^2(G/T, Z)$ [2, § 10]. The following two theorems play the essential role in computation of H(t).

Theorem 2.1 (Borel-Hirzebruch [2, § 24.7]). Let Ψ be a set of roots giving the complex structure of G/U. Let β be a weight orthogonal to the roots of U and $(\beta, \alpha) > 0$ for all $\alpha \in \Psi$, where (,) denotes the bilinear form induced from the Killing form. Then the Todd genus $T(G/U, \beta) = \{e^{\beta} \mathfrak{T}(G/U)\}[G/U]$ is equal to the dimension of the irreducible representation with the highest weight β .

Theorem 2.2 (Weyl's dimension formula). Let V be an irreducible representation space with the highest weight β . Then

dim
$$V = \prod_{\alpha>0} (\beta + \delta, \alpha) / \prod_{\alpha>0} (\delta, \alpha) \qquad \delta = \sum_{\alpha>0} \alpha/2.$$

Combining these two theorems, the Hilbert polynomial H(t) with respect to $z=e^{\beta}$ and $d=c_1(X)$ is obtained as

(2.1)
$$H(t) = \prod_{\alpha \in \Psi} (t\beta + \delta, \alpha) / \prod_{\alpha \in \Psi} (\delta, \alpha)$$

where the multiplication runs through over the positive complementary roots $\alpha \in \Psi$, since $(\beta, \alpha) = 0$ if α is a root of U by orthogonality.

§ 3. Complex Grassmann manifolds. In this section, we give the proof of Main Theorem. Let $U(k) \times U(n-k) \rightarrow U(n) \rightarrow G_{k,n-k}$ be the natural principal bundle and let $\zeta_1 \oplus \zeta_2$ be the associated vector bundle. Denoting $c_i = c_i(\zeta_1)$ (or $c'_i = c_i(\zeta_2)$) the *i*-th Chern class of ζ_1 (or ζ_2) respectively, we have

 $H^*(G_{k,n-k},Z) = Z[c_1, c_2, \cdots, c_k, c_1', \cdots, c_{n-k}]/J^+$

where J^+ is an ideal generated by the elements $\{\sum_{i+j=k} c_i c'_j; k > 0\}$.

Let F(n) be the complex flag manifold $U(n)/T^n$ where T^n is a maximal torus of U(n). Let $T^n \to U(n) \to F(n)$ be the natural principal bundle and let $\xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n$ be the associated vector bundle. Denoting $x_i = c_1(\xi_i)$ the first Chern class of ξ_i , we have

$$H^*(F(n), Z) = Z[x_1, x_2, \cdots, x_n]/I^+$$

where I^+ is generated by all symmetric polynomials of positive degree in x_1, x_2, \dots, x_n .

Let $\pi: F(n) \to G_{k,n-k}$ be the natural fibre bundle with the fibre $F(k) \times F(n-k)$. Then $\pi^*: H^*(G_{k,n-k}, Z) \to H^*(F(n), Z)$ is a monomorphism and $\pi^*(c_i)$ (or $\pi^*(c'_i)$) is the *i*-th elementary symmetric polynomial in x_1, x_2, \dots, x_k (or in x_{k+1}, \dots, x_n) respectively (Borel-Hirzebruch [2, § 16.2]).

Consider the k-th exterior product $\bigwedge^k \zeta_1$ of ζ_1 . Since ζ_1 is a U(k)bundle, $\bigwedge^k \zeta_1$ is a line bundle and its first Chern class satisfies

$$\pi^*\!\left(c_1\!\left(\bigwedge^k \zeta_1\right)\right) = x_1 + x_2 + \cdots + x_k.$$

The Hilbert polynomial with respect to $z = ch \left(\bigwedge^{k} \zeta_{1} \right) = \exp(x_{1} + \cdots + x_{k})$ and $d = c_{1}(G_{k,n-k})$ is

(3.1) $H(t) = \{ \exp((t(x_1 + \cdots + x_k))\mathcal{I}(G_{k,n-k})) \} [G_{k,n-k}].$

By the elementary Lie algebraic theory, the set of the positive roots of U(n) is $\{e_i - e_j; 1 \leq i < j \leq n\}$. Note that the elements e_1, e_2, \cdots , $e_n \in V^*$ are identified with $-x_1, -x_2, \cdots, -x_n \in H^2(F(n), Z)$ (see §2). The bilinear form is given by

(3.2) $(e_i, e_j) = \delta_{ij}$ (Kronecker delta).

Now we are ready to prove Main Theorem. For the part (a), by Theorem 1.1, it is sufficient to show

(3.3)
$$r = 2m + \nu_2 \left(H\left(\frac{1}{2}\right) \right) = \sum_{j=1}^k \left(\alpha(n-j) - \alpha(j-1) \right).$$

By (2.1) and (3.1), H(1/2) is equal to (3.4) $\prod_{\substack{k=1 \le j \le n \\ k+1 \le j \le n}}^{1 \le i \le k} ((\beta/2) + \delta, e_i - e_j) / \prod_{\substack{k=1 \le j \le n \\ k+1 \le j \le n}}^{1 \le i \le k} (\delta, e_i - e_j)$ where $\beta = -(e_1 + e_2 + \dots + e_k)$ and $\delta = (\sum_{1 \le i < j \le n} (e_i - e_j)/2$. Since $(\delta, e_i - e_j) = j - i$ and

$$(\beta, e_i - e_j) = \begin{cases} 1 & \text{if } 1 \leq i \leq k \text{ and } k + 1 \leq j \leq n, \\ 0 & \text{otherwise,} \end{cases}$$

hold by (3.2), we get

$$H\left(\frac{1}{2}\right) = \prod_{j=1}^{k} \left(\frac{1}{2} + n - j\right)_{n-k} / \prod_{j=1}^{k} (n-j)_{n-k}$$

where $(s)_q$ denotes the multiplication $s(s-1)\cdots(s-q+1)$ for a real number s and a positive integer q. Note that if s is also an integer with $s \ge q$, then $(s)_q = s!/(s-q)!$ and making use of well known elementary number theoretical formula $s = \nu_2(s!) + \alpha(s)$, we obtain $\nu_2((s)_q) = q$ $-\alpha(s) + \alpha(s-q)$. Thus we have

$$\nu_{2} \left(\prod_{j=1}^{k} \left(\frac{1}{2} + n - j \right)_{n-k} \right) = -k(n-k)$$
$$\nu_{2} \left(\prod_{j=1}^{k} (n-j)_{n-k} \right) = k(n-k) - \sum_{j=1}^{k} (\alpha(n-j) - \alpha(k-j))$$

and hence (3.3) is obtained.

Preceding the proof of the part (b) of Main Theorem, we prepare a lemma. Let $\hat{A}(X) = \hat{A}(X, 0, 1) = \hat{\mathcal{A}}(X)[X]$ be the \hat{A} -genus.

Lemma 3.1. Let $z = ch (\bigwedge^{k} \zeta_{1})$ and $d = c_{1}(G_{k,n-k})$. If n is odd, then $\nu_{2}(\hat{A}(G_{k,n-k}, d/2, z^{(1/2)}) = \nu_{2}(\hat{A}(G_{k,n-k})).$

Proof. Since $\hat{A}(X) = \hat{\mathcal{A}}(X)[X] = \{\exp(-c_1(X)/2))\mathcal{I}(X)\}[X]$, substituting $X = G_{k,n-k}$, we can use Theorems 2.1 and 2.2 again. Note that the first Chern class $c_1(G_{k,n-k})$ is obtained as $-nc_1$ by Borel-Hirzebruch [2, § 16.2] where $\pi^*(c_1) = -(x_1 + \cdots + x_k) \in H^2(F(n), Z)$. Hence $\hat{A}(G_{k,n-k})$ is equal to (3.4) with $\beta = n(e_1 + e_2 + \cdots + e_k)$ and the lemma follows.

Now (b) follows from Lemma 3.1 and Theorem 1.2 with $z=1 \in chO(G_{k,n-k}).$

References

- M. F. Atiyah and F. Hirzebruch: Quelque théorèmes de non-plongement pour les variétés différentiables. Bull. Soc. Math. France, 87, 383-396 (1959).
- [2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces
 I, II, III. Amer. J. Math., 80, 458-538 (1958); 81, 315-382 (1959); 82, 491-504 (1960).
- [3] F. Hirzebruch: Topological Methods in Algebraic Geometry. 3rd ed., Springer (1966).
- [4] K. H. Mayer: Elliptische Differential operatoren und Ganzzahligkeitssätze für Charakteristische Zahlen. Topology, 4, 295–313 (1965).
- [5] B. J. Sanderson and R. L. E. Schwarzenberger: Non-immersion theorems

No. 2]

for differentiable manifolds. Proc. Camb. Phil. Soc., 59, 319-322 (1963).

[6] T. Sugawara: Immersion and embedding problem for complex flag manifolds. Osaka J. Math., 15, 117-135 (1978).