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The invertibility problem of knots is an old problem in kn,ot theory.
Although specific examples of non-invertible knots are obtained by
H. F. Trotter [12] and W. Whitten [14], any reasonable invertibility
invariants for testing examples are not known. Following R. Riley
[8], we call a tame knot k in a 3-sphere S excellent when S--k has a
hyperbolic structure, i.e., a complete Riemannian metric of constant
negative curvature with finite volume. By Thurston’s existence
theorem [11] of a hyperbolic structure, we see that many knots are
excellent. In this paper we shall present an invertibility invariant for
amphicheiral excellent knots. This invariant is enough to make a
complete list of prime knots up to 10 crossings which are non-invertible
and amphicheiral. Let (t} be an infinite cyclic group with a generator
t and Z(t} be its group ring. Let fl and f2 be in Z(t}. By fl"-f
(orf"-f) we mean that f and f (or the Z-reductions of f andf) are
equal up to units of Z(t} (or Z.(t}). Let k(t) be the Alexander poly-
nomial (e Z(t}) of a tame knot k in S. Let p(t)=(t-l)/(t-1)for
any integer 2 0.

Theorem 1. Let k be an excellent knot. If k is negative-amphi-
cheiral, then (1) k(t) f(t)f(- t) for f(t) e Z(t} with f(- t) f(t-) and
]f(1)[=l. If k is positive-amphicheiral, then (2) either k(t) "-f(t) for
f(t) e Z(t} with f(t) "-f(t -) and If(l)I= 1, or there exist positive integers
n, with 2 odd such that k(t) f(t)fo(t)f(t) f_l(t) for f(t), f(t) e
with f(t) f(t-), f(t) f(t-), If(l) I=lf(1)]= 1 and f(t) "-f(t)2+lp(t)’,
i=0, 1, ., n- 1. If k is invertible and amphicheiral, then k(t)satisfies
both (1) and (2).

Let h denote a piecewise-linear auto-homeom0rphism of S with
h(k)=k. Then k is (periodically or strongly, resp.) amphicheiral if
there is an orientation-reversing h (or finite order or of order 2, resp.)
more precisely, k is (periodically or strongly, resp.) positive- or negative-
amphicheiral according to whether h lk is orientation-preserving or
-reversing. k is (strongly) invertible if there is an orientation-preserv-
ing h (of order 2) such that h lk is orientation-reversing.
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Lemma 1o An excellent knot t is periodically positive-amphi-
cheiral, strongly negative-amphicheiral or strongly invertible, respec-
tively, if it is positive-amphicheiral, negative-amphicheiral or in-
vertible.

Proof. Let h be an auto-homeomorphism o S giving a positive-,
negative-amphicheirality or invertibility o k. By Mostow’s rigidity
theorem [6] and L. C. Siebenmann [10, 7, Assertion], after a homotopic
deformation o h we can assume that h has a finite order. Then we
may assume that h has order 2/, n0. (If h has order 2n/m, m odd,
we can replace h by h, where note that the order of h is always even
since h or h lk is orientation-reversing.) To complete the proof, it
suffices to prove that if hi k is orientation-reversing and n1, then k
is a trivial knot. This ollows rom F. Waldhausen [14] since k is the
fixed point set of the orientation-preserving involution h by Smith
theory [1]. This completes the proof.

Proof of Theorem 1. By Lemma 1 k is strongly negative-amphi-
cheiral, if it is negative-amphicheiral. So, (1) ollows from R. Hartley
and the author [4]. Let k be positive-amphicheiral and hence periodi-
cally positive-amphicheiral by Lemma 1. Let h be an auto-homeomor-
phism of S of order 2/1, n_0, giving this amphicheirality
n=0, k is strongly positive-amphicheiral, so by [4] k(t)’--f(t) or
f(t) e Z(t} with f(t)’--f(t-) and If(1)l--1. Let nl. h is orientation-
reversing, so that Fix (h):/:qi by Lefschetz fixed point theorem. Hence
Fix (h2) is a knot, k, by Smith theory [1]. By [13] k is a trivial knot,
so that the orbit space S,--S/h is a 3-sphere. / k--gf since hl/ is
orientation-preserving. It ollows that k is a lift of some knot k, cS,
under the canonical 2-old c$clic branched covering S-S, branched
along some trivial knot k,cS,. Since k is connected, the linking
number, , of k, and k must be odd. Orient k so that 0. Let
d(t, tO be the (integral) Alexander polynomial of the link k,
Define d(t)-- V[ d(t, o) ( e Z(t) where ranges over all 2-th roots of
unity, and f,(t)-d/(t)/d,(t) (e Z(t)), i--0, 1,2, .... Since d(t,- Z), we+/-tlt.d(tl t;) (a, b e see that d(t) "--d(t-) and hence f(t)
-f(t-1). By K. Murasugi [7, Theorem 1 and Propositions 4.1, 4.2],
p(t)k(t)- d(t)=do(t)fo(t). f_(t), do(t)- d(t, 1) k,(t)p(t) and d(t)
"-. d(t, 1)’- k,(t)"p(t). It ollows that k(t)- k,(t)fo(t). f_(t) and

f(t)-lc,(t)’p(t). If(1)1-1 ollows from Ik(1)1=1. To complete the
proof, it suffices to prove that k,(t)"--f(t) or f(t)e Z(t with f(t-)
"-f(t) and If(l)[= 1. This follows from [4], since an involution of S,
induced by h gives a strong positive-amphicheirality of k,. This com-
pletes the proof.

The following is a revised special case of Thurston’s existence
theorem of a hyperbolic structure [11] and due to R. Riley [8, Corollary
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to Theorem 1].
Lemma 2. A non-trivial, 2-bridged or prime 3-bridged knot is ex-

cellent if and only if it is not a torus knot.
Corollary. (1) Any 2-bridged or prime invertible 3-bridged knot

is strongly invertible. (2) A 2-bridged or prime 3-bridged knot is
excellent if it is amphicheiral.

Proof. Any 2-bridged knot is invertible. (1) ollows 2rom Lemmas
1, 2 and the act that a torus knot is strongly invertible. (Let S
={z e C]lzl=l} and S={(z,z) e C]lz]+lzl=2}. The (p, q)-torus knot
k(p, q) with p, q coprime is the image of the imbedding SSSS
sending z to (z, z0. Then the complex conjugation gives a strong in-
vertibilit$ of k(p, q).) (2) ollows rom Lemma 2 since no amphicheiral
knot is a torus knot. (To see this, use a local knot signature argument
(cf. J. W. Milnor [5]).)

The strong invertibility of a 2-bridged knot has been pointed out
also by J. M. Montesinos. Also, in [4] we have known that any 2-
bridged amphicheiral knot is strongly negative-amphicheiral, but not
strongly positive-amphicheiral.

Here is a list o prime amphicheiral knots up to 10 crossings (in
the notation of Rolfsen’s book [9]). (C. J. H. Conway [3].) 4, 6, 8,
8, 8, 8, 8, I0, I0, 10, I0, I0, I0, I0,, I0, I0, I00, I0,, I0, I0..
Clearly, these are 2-bridged or 3-bridged. So, they are excellent by
Corollary (2). Since they are negative-amphicheiral (eL [3]), they are
all strongly negative-amphicheiral by Lemma I. This has been proved
also by Van Buskirk [2]. The knots other than 8,, 10, 10, 10s, I00,
10, 10, are known to be invertible (cL [3]). So, by Lemma 1 they
are strongly invertible and periodically positive-amphicheiral, among

which the only strongly positive-amphicheiral knots are I0 and 10,
([4]).

Theorem 2. The remaining knots 8,7, 1079, 1081, 1088, 10109,
are all non-invertible.

The proof follows by checking that none of them satisfies the con-
dition (2) of Theorem 1.

We note that the non-invertibility of 8 has been proved also, by
a geometric method, by F. Bonahon and L. C. Siebenmann in Low-
Dimensional Topology Conference at Bangor, 1979.
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