92. The Invertibility Problem on Amphicheiral Excellent Knots*)

By Akio Kawauchi
The Institute for Advanced Study and Osaka City University
(Communicated by Kunihiko Kodaira, m. J. a., Dec. 12, 1979)

The invertibility problem of knots is an old problem in knot theory. Although specific examples of non-invertible knots are obtained by H. F. Trotter [12] and W. Whitten [14], any reasonable invertibility invariants for testing examples are not known. Following R. Riley [8], we call a tame knot k in a 3 -sphere S^{3} excellent when $S^{3}-k$ has a hyperbolic structure, i.e., a complete Riemannian metric of constant negative curvature with finite volume. By Thurston's existence theorem [11] of a hyperbolic structure, we see that many knots are excellent. In this paper we shall present an invertibility invariant for amphicheiral excellent knots. This invariant is enough to make a complete list of prime knots up to 10 crossings which are non-invertible and amphicheiral. Let $\langle t\rangle$ be an infinite cyclic group with a generator t and $Z\langle t\rangle$ be its group ring. Let f_{1} and f_{2} be in $Z\langle t\rangle$. By $f_{1} \doteq f_{2}$ (or $f_{1} \doteq{ }_{2} f_{2}$) we mean that f_{1} and f_{2} (or the Z_{2}-reductions of f_{1} and f_{2}) are equal up to units of $Z\langle t\rangle$ (or $Z_{2}\langle t\rangle$). Let $k(t)$ be the Alexander polynomial ($\in Z\langle t\rangle$) of a tame knot k in S^{3}. Let $p_{\lambda}(t)=\left(t^{2}-1\right) /(t-1)$ for any integer $\lambda>0$.

Theorem 1. Let k be an excellent knot. If k is negative-amphicheiral, then (1) $k\left(t^{2}\right) \doteq f(t) f(-t)$ for $f(t) \in Z\langle t\rangle$ with $f(-t) \doteq f\left(t^{-1}\right)$ and $|f(1)|=1$. If k is positive-amphicheiral, then (2) either $k(t) \doteq f(t)^{2}$ for $f(t) \in Z\langle t\rangle$ with $f(t) \doteq f\left(t^{-1}\right)$ and $|f(1)|=1$, or there exist positive integers n, λ with λ odd such that $k(t) \doteq f(t)^{2} f_{0}(t) f_{1}(t) \cdots f_{n-1}(t)$ for $f(t), f_{i}(t) \in Z\langle t\rangle$ with $f(t) \doteq f\left(t^{-1}\right), f_{i}(t) \doteq f_{i}\left(t^{-1}\right),|f(1)|=\left|f_{i}(1)\right|=1$ and $f_{i}(t) \doteq{ }_{2} f(t){ }^{2^{i+1}} p_{\lambda}(t)^{2^{i}}$, $i=0,1, \cdots, n-1$. If k is invertible and amphicheiral, then $k(t)$ satisfies both (1) and (2).

Let h denote a piecewise-linear auto-homeomorphism of S^{3} with $h(k)=k$. Then k is (periodically or strongly, resp.) amphicheiral if there is an orientation-reversing h (or finite order or of order 2, resp.); more precisely, k is (periodically or strongly, resp.) positive- or negativeamphicheiral according to whether $h \mid k$ is orientation-preserving or -reversing. k is (strongly) invertible if there is an orientation-preserving h (of order 2) such that $h \mid k$ is orientation-reversing.

[^0]Lemma 1. An excellent knot k is periodically positive-amphicheiral, strongly negative-amphicheiral or strongly invertible, respectively, if it is positive-amphicheiral, negative-amphicheiral or invertible.

Proof. Let h be an auto-homeomorphism of S^{3} giving a positive-, negative-amphicheirality or invertibility of k. By Mostow's rigidity theorem [6] and L. C. Siebenmann [10, § 7, Assertion], after a homotopic deformation of h we can assume that h has a finite order. Then we may assume that h has order $2^{n+1}, n \geq 0$. (If h has order $2^{n+1} m$, m odd, we can replace h by h^{m}, where note that the order of h is always even since h or $h \mid k$ is orientation-reversing.) To complete the proof, it suffices to prove that if $h \mid k$ is orientation-reversing and $n \geq 1$, then k is a trivial knot. This follows from F. Waldhausen [14] since k is the fixed point set of the orientation-preserving involution $h^{2 n}$ by Smith theory [1]. This completes the proof.

Proof of Theorem 1. By Lemma $1 k$ is strongly negative-amphicheiral, if it is negative-amphicheiral. So, (1) follows from R. Hartley and the author [4]. Let k be positive-amphicheiral and hence periodically positive-amphicheiral by Lemma 1 . Let h be an auto-homeomorphism of S^{3} of order $2^{n+1}, n \geq 0$, giving this amphicheirality of k. If $n=0, k$ is strongly positive-amphicheiral, so by [4] $k(t) \doteq f(t)^{2}$ for $f(t) \in Z\langle t\rangle$ with $f(t) \doteq f\left(t^{-1}\right)$ and $|f(1)|=1$. Let $n \geq 1$. h is orientationreversing, so that Fix $(h) \neq \phi$ by Lefschetz fixed point theorem. Hence Fix (h^{2}) is a knot, k^{0}, by Smith theory [1]. By [13] k^{0} is a trivial knot, so that the orbit space $S_{*}=S^{3} / h^{2}$ is a 3 -sphere. $k \cap k^{0}=\phi$ since $h \mid k$ is orientation-preserving. It follows that k is a lift of some knot $k_{*} \subset S_{*}$ under the canonical 2^{n}-fold cyclic branched covering $S^{3} \rightarrow S_{*}$ branched along some trivial knot $k_{*}^{0} \subset S_{*}$. Since k is connected, the linking number, λ, of k_{*} and k_{*}^{0} must be odd. Orient k_{*}^{0} so that $\lambda>0$. Let $d\left(t_{1}, t_{2}\right)$ be the (integral) Alexander polynomial of the link $k_{*} \cup k_{*}^{0} \subset S_{*}$. Define $d_{i}(t)=\prod_{\omega_{i}} d\left(t, \omega_{i}\right)(\in Z\langle t\rangle)$ where ω_{i} ranges over all 2^{i}-th roots of unity, and $f_{i}(t)=d_{i+1}(t) / d_{i}(t) \quad(\in Z\langle t\rangle), i=0,1,2, \cdots$. Since $d\left(t_{1}, t_{2}\right)$ $= \pm t_{1}^{a} t_{2}^{b} d\left(t_{1}^{-1}, t_{2}^{-1}\right)(a, b \in Z)$, we see that $d_{i}(t) \doteq d_{i}\left(t^{-1}\right)$ and hence $f_{i}(t)$ $\doteq f_{i}\left(t^{-1}\right)$. By K. Murasugi [7, Theorem 1 and Propositions 4.1, 4.2], $p_{\lambda}(t) k(t) \doteq d_{n}(t)=d_{0}(t) f_{0}(t) \cdots f_{n-1}(t), \quad d_{0}(t)=d(t, 1) \doteq k_{*}(t) p_{\lambda}(t)$ and $d_{i}(t)$ $\doteq_{2} d(t, 1)^{2 i} \doteq k_{*}(t)^{2 i} p_{\lambda}(t)^{2 i}$. It follows that $k(t) \doteq k_{*}(t) f_{0}(t) \cdots f_{n-1}(t)$ and $f_{i}(t) \doteq{ }_{2} k_{*}(t)^{2 t} p_{\lambda}(t)^{2 t} .\left|f_{i}(1)\right|=1$ follows from $|k(1)|=1$. To complete the proof, it suffices to prove that $k_{*}(t) \doteq f(t)^{2}$ for $f(t) \in Z\langle t\rangle$ with $f\left(t^{-1}\right)$ $\doteq f(t)$ and $|f(1)|=1$. This follows from [4], since an involution of S_{*} induced by h gives a strong positive-amphicheirality of k_{*}. This completes the proof.

The following is a revised special case of Thurston's existence theorem of a hyperbolic structure [11] and due to R. Riley [8, Corollary
to Theorem 1].
Lemma 2. A non-trivial, 2-bridged or prime 3-bridged knot is excellent if and only if it is not a torus knot.

Corollary. (1) Any 2-bridged or prime invertible 3-bridged knot is strongly invertible. (2) A 2-bridged or prime 3-bridged knot is excellent if it is amphicheiral.

Proof. Any 2-bridged knot is invertible. (1) follows from Lemmas 1,2 and the fact that a torus knot is strongly invertible. (Let S^{1} $=\{z \in C| | z \mid=1\}$ and $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in C^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=2\right\}$. The (p, q)-torus knot $k(p, q)$ with p, q coprime is the image of the imbedding $S^{1} \rightarrow S^{1} \times S^{1} \subset S^{3}$ sending z to $\left(z^{p}, z^{q}\right)$. Then the complex conjugation gives a strong invertibility of $k(p, q)$.) (2) follows from Lemma 2 since no amphicheiral knot is a torus knot. (To see this, use a local knot signature argument (cf. J. W. Milnor [5]).)

The strong invertibility of a 2-bridged knot has been pointed out also by J. M. Montesinos. Also, in [4] we have known that any 2bridged amphicheiral knot is strongly negative-amphicheiral, but not strongly positive-amphicheiral.

Here is a list of prime amphicheiral knots up to 10 crossings (in the notation of Rolfsen's book [9]). (Cf. J. H. Conway [3].) $4_{1}, 6_{3}, 8_{3}$, $8_{9}, 8_{12}, 8_{17}, 8_{18}, 10_{17}, 10_{33}, 10_{37}, 10_{43}, 10_{45}, 10_{79}, 10_{81}, 10_{88}, 10_{99}, 10_{109}, 10_{115}, 10_{118}, 10_{123}$. Clearly, these are 2 -bridged or 3 -bridged. So, they are excellent by Corollary (2). Since they are negative-amphicheiral (cf. [3]), they are all strongly negative-amphicheiral by Lemma 1 . This has been proved also by Van Buskirk [2]. The knots other than $8_{17}, 10_{79}, 10_{81}, 10_{88}, 10_{109}$, $10_{115}, 10_{118}$ are known to be invertible (cf. [3]). So, by Lemma 1 they are strongly invertible and periodically positive-amphicheiral, among which the only strongly positive-amphicheiral knots are 10_{99} and 10_{123} ([4]).

Theorem 2. The remaining knots $8_{17}, 10_{79}, 10_{81}, 10_{88}, 10_{109}, 10_{115}, 10_{118}$ are all non-invertible.

The proof follows by checking that none of them satisfies the condition (2) of Theorem 1.

We note that the non-invertibility of 8_{17} has been proved also, by a geometric method, by F. Bonahon and L. C. Siebenmann in LowDimensional Topology Conference at Bangor, 1979.

References

[1] A. Borel et al.: Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press (1960).
[2] J. M. Van Buskirk: A class of amphicheiral knots and their Alexander polynomials. Notes, Aarhus Univ. (1977).
[3] J. H. Conway: An enumeration of knots and links, and some of their algebraic properties. Computational Problems in Abstract Algebra (ed. by J. Leech), Pergamon Press, pp. 329-358 (1970).
[4] R. Hartley and A. Kawauchi: Polynomials of amphicheiral knots. Math. Ann. (to appear).
[5] J. W. Milnor: Infinite cyclic coverings. Topology of Manifolds (ed. by J. Hocking), Prindle, Weber \& Schmidt, pp. 115-133 (1968).
[6] G. D. Mostow: Strong Rigidity of Locally Symmetric Spaces. Ann. of Math. Studies, no. 78, Princeton Univ. Press (1976).
[7] K. Murasugi: On periodic knots. Comment. Math. Helv., 46, 162-178 (1971).
[8] R. Riley: An elliptical path from parabolic representations to hyperbolic structures (preprint).
[9] D. Rolfsen: Knots and Links. Publish or Perish Inc. (1976).
[10] L. C. Siebenmann: On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3 -spheres. Notes, I.H.E.S. (1979).
[11] W. P. Thurston: Lectures in Conference on Smith Conjecture and in LowDimensional Topology Conference. Columbia Univ. (1979), Bangor (1979) (to appear).
[12] H. F. Trotter: Non-invertible knots exist. Topology, 2, 275-280 (1963).
[13] F. Waldhausen: Über Involutionen der 3-Sphäre. Ibid., 8, 81-91 (1969).
[14] W. Whitten: Surgically transforming links into noninvertible knots. Amer. J. Math., 94, 1269-1281 (1972).

[^0]: *) Supported in part by NSF grant MCS77-18723 (02).

