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For the space (_q)), K. Kunugi pointed out in [4] that, if we use the
method of ranked spaces introduced by Kunugi in 1954 [3], (_q)) can be
treated as a space having a countable base (cf. [6, III, 1]). In this
paper we will show that the same assertion also holds for the space (_q)’)
of distributions. Indeed, the space (_q)’) can be defined as a ranked
space having a countable base, in such a way that the r-convergence
in the ranked space (2’) coincides with the weak convergence in (_q)’) (cf.
[6, III, 3]). We moreover show that the ranked space (_q)’) so defined
is a complete ranked vector space satisfying the r-second countability
axiom, and show that the family of r-Borel sets in the ranked space
(_q)’) coincides with the family of Borel sets in the weak topology of (_q)’).

For notations and definitions in the distribution theory and the
ranked space theory we refer to [6] and [5], respectively. In particular,
we say that the base of a ranked space E is countable if, for each p e E
and for each n e N, where N={0, 1, 2,... }, preneighborhoods of p of
rank n are at most countable infinity; and say that a ranked space
E satisfies the r-second countability axiom if there exists a countable
collection of preneighborhoods such that, for any r-open set 0 in
E and any point p e 0, there exists a W e q/g such that p e W0. We
call the members of the smallest a-algebra which contains all of the
r-open sets in a ranked space E the r-Borel sets in E.

We first give the definition of the ranked space (_q)) in a slight
modification of the definition of Kunugi. For e N, by (_q)t) we denote
the vector subspace of (_q)) consisting of all functions of (_q)) which
vanish outside the set K(1)={x=(x,...,x,)eR Ix]/+l for i=l,
.., n}. Consider in (2,) the countable system of norms"

=sup {supx IDP(x)I" p=(p,, ..., Pn), pgm
for i=l, ...,n}, (me N).

Corresponding to m e N and 0, consider the set
denoted by S(l, m, ). We define, for each e N, the ranked space (_q))
as a ranked space ((_q)), cV’(), cV) provided with cV’() {+S(1, m, )"
m e N, 0} and c(?={+S(/, m, 1/2) e (_q))} and define the ranked
space (.q)) as a ranked space ((_q)), cV(), c(?) provided with c(()
={+S(/, m, D" 1,meN, e>0} and cv={+S(1, m,1/2") leN,
We will denote the preneighborhood +S(/, m, 1/2
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by V(; l, m).
Lemma 1. For some 0, let Mc{e (.q))" 1111/}o Then,

for any 0, there exist 1, ", 8 e M such thatM={,+S(1, re, D}
(cf., or example, [1, p. 55]).

Proposition 1. For each ranked space () (1 e N, there exists a
countable set which is dense in the ranked space ().

A unctional defined on () is r-continuous in the ranked space ()
if and only if it is r-continuous in every ranked space () (l e N);
a unctional defined on () is r-continuous in the ranked space (2)
and only i it is continuous in the topology of the ordinary sense defined
by the countable system (me N) of norms (see [1, p. 19]); and a
linear unctional defined on () is a distribution i and only if it is r-
continuous in the ranked space (2).

We denote the set (e ()" l1} by B. For a linear func-
tional f defined on (), we define [f]=sup T if T is bounded above,
and + if T is unbounded above, where T={]f()] e B}.

Lemma 2. Let
A={f e (’)’]fl< for i=0, 1, ...,]},
B={f e (’)" f<fl for i=O, 1,...,

Then, if AB, ]]’ and nogng. gnu,, it holds that mnfor i=0,

Lemma . Let A and B be as in Lemma 2. If AB and nogn,
n,, then ]

Lemma 2 can elementarily be proved, and Lemma 3 is immediate
from Lemma 2.

Corresponding to a system o non-negative integers" mogm
g... gm, consider the set

{f e (’)" f<l/2 or i=0, 1, ..., ]},
denoted by K(], {m}). Then

Lemma 4. K(], {m})K(]’, {m}) holds if and only if ]]’ and

mm for i=0,1, ...,].
Proof. The "if" part is immediate from the fact that f

if m’gm. The "only if" part ollows rom Lemmas 2 and 3.
Let f e (’). Corresponding to each ] e N and each system of non-

negative integers" momg... m, we define a preneighborhood of

f by f+K(], {m}). A preneighborhood f+K(], {m}) is said to be of
rank ]. Denote by (f) the amily of all preneighborhoods of f and by

the family of all preneighborhoods of rank ]. "Then, the space (’)
provided with (f) (f e (’)) and (] e N) becomes a ranked space.
Moreover, as is easily seen, the base of the ranked space (’) is counta-
ble. From now on the ranked space (’) means the ranked space (’)
so defined. We will denote the preneighborhood f
o f by V(f; ], {m}).
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Proposition 2. (1) The family of preneighborhoods in the ranked
space (’) satisfies the axioms (B) and (C) of Hausdorf] (see [2, p. 213]).

(2) The ranked space (’) is a ranked vector space satisfying the
condition (b) of Proposition 29 in [5].

Lemma 5. Let V(f ], {m}) Y(f ]’, {u)) V(g ]", {n}) and
]<]’. Then,

() (/< .,< .,,)2 =.] and
(2) m>=m for i=0, 1, ...,] and mn for i=0, 1, ...,
This can be proved by using Lemmas 2 and 3. Lemmas 4 and 5

play a central role in our methods.
Lemma 6. Let {f} be a Cauchy sequence in the ranked space

Then, for any C e (), {f()} is a Cauchy sequence in the complex
number field.

Proof. B.y the assumption, there exists a canonical fundamental
sequence u={V= V(g k, {m})}-such that, for every i e N, ] can be
found with the property that, if ]>__], then f e V. Since u is canonical,
i<=k. Let (=/=0)e (). Then, belongs to some ()). For each i>=l,
consider the member m of {m" t=0, 1, ..., k} and the member m of
{m" t 0, 1, ., k}. Then, by Lemma 5 and the fact that u is canonical,
m>=m holds. Therefore’, if we put =(1/D, where =1]11, then,
I]@l]<__llll--1. On the other hand or ]’, ]">=], f,-f,,]l<l/2’-.
Hence, If,()-f,,()l</2-.

Theorem 1. Let f, f e (.’) (]=1,2, ...). Then, {f} r-converges
to f in the ranked space (’) if and only if {f} converges weakly to f

Proof. The "i" part. For each e N, an m e N can be ound
with the property that, or each i e N, there exists a k such that,
]>=k, then f-f ,1/2 (see [1, p. 57]). Then, we can choose {m}
in such a way that mt_<_m+. For such a {m}, define the sequence o
preneighborhoods {V= V(f; i, {m0=<... __<m}). Then, the sequence is
undamental andf e V or every ]=>max (k, k{, ., k{). The "only i"
part is immediate rom Lemma 6.

Theorem 2. The ranked space (’) is complete.
Proof. For a undamental sequence {V=V(g; k, {m.})}, by

Lemma 6 there exists lira g() for any e (). Set g()=lim g().
Then g e (_q)’) (see [1, p. 68]). Moreover g e V.

Lemma 7. Consider a system of non-negative integers" mo<=m,
<=. <_ m. Let, for some a> O,

Mc{f e (_’) I]fl],_<_ for i=0, 1,..., j}.
Then, there exist fl, ",fp e M such that McJ__I V(f; ], {m,+l}).

Proof. Letie{O, 1,...,j}andsete=l/(a.2+2). Then, byLemma
1 there exist i, ..., , e B,/ such that BL,/c ’__ {+S(i, m,,D}. We
put t= t,, and we make correspond to each f e M a point v(f) of t-
dimensional complex Euclidean space defined by
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v(f)=(f(0), "’’, f(to), f(), "’’, f(1), "’’, f(i), "", f(t)).
Set H--{v(f)" f e M}. Then, by the assumption, there exists a finite
covering of H consisting of solid spheres {0" k=l,...,p} with
diam(O)<l/2/ and such that O(H=O. The desired assertion is
true for a system f e M (k= 1, ..., p) so chosen that v(f) e 0.

Theorem 3. The ranked space (0’) satisfies the r-second count-
ability axiom.

Proof. Denote a system of non-negative integers" mo<=m<=...
mj by r. Corresponding to a v and a ke N, set K=(f e (.qF)"
=<k+l or i=0, 1,...,]}. For each K, by Lemma 7 there exist
f8 e K (s 1, p) such that Kc’s=l’ V(fs ], (m+ 1}). The
desired assertion is true for the countable collection consisting of all
the preneighborhoods so chosen for all pairs r, k.

Denote by . the amily of Borel sets in the weak topology of
(_q)’) and by

_
the family of r-Borel sets in the ranked space (_q)’).

Lemma 8. Every set which is open in the weak topology of (’)
is also r-open in the ranked space (’).

Proof. Consider a weak neighborhood of f e (’)" W(f)--f
+{g e (.t)’lg(t)]s for t=l, ..., s}. For r=f+g e W(f), consider
any canonical fundamental sequence u=(V= V(r k, {rag <=. <=m})
of center r. Take an e N such that (_q)) , , and let ] be the
smallest integer such that l<=k. Take a ]’ such that k,>=max(/,
+l)/a), where 2=max, Ct]l and =min (e-[g(,)[). Then, we have
Vj.cW(f).

Lemma 9. Let M--{f e (’)" llf l=a} Then, M
Proof. By Proposition 1, there exists a countable set {} which

is:dense in B. For each ke {1,2, ...}, put M={f e (_q)’)"
for ]= 1, ., k}. Then, M=__1M.

From Lemmas 8 and 9 and Theorem 3, it ollows that
Theorem 4. _q3z coincides with .
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