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1. Introduction. In the study of the limit distributions of
multi-type Galton-Watson processes, S. Sugitani [2] has discovered
that if a nonnegative function (t, 2), defined for t>=0, 2>=0, satisfies
the ordinary differential equation having as a parameter
( 1 ) +’= B+ +2p(t), +(0, 2) m2,
where B>0, m_>_0 and p(t) is a polynomial with positive coefficients,
then there exists for each t>0 an infinitely divisible distribution vt on
[0, oo) such that

(2) exp {--fl +(s, 2)ds)=; e-Xv,(dx).

Further information on v, is given in [3].
In this note we will prove a stronger result that exp {--(t, 2)} is

the Laplace transform of some infinitely divisible distribution/, on
[0, oo). Our proof is quite elementary and can be applied to more
general equations.

2. A heuristic argument. Given f(x), g(t, 2) and h(2) defined
for x e (-oo, c), t e [0, T], 2 e [0, oo), consider the following ordinary
differential equation having 2 as a parameter;
( 3 ) +’=f(+) + g(t, ), +(0, )= h().
For the moment, we assume that equation (3) has a unique solution
(t, ) in [0, T] [0, oo). Here and after we will write’ for D,(t, 2),
for Df, g(t, 2) for D?g(t, 2) and so on. We now seek a suitable con-
dition in order that +(t, ) is completely monotonic in e (0, oo) for
each t>=O. The essential part of our condition is that --f(2)(.), g(t, .)
for each t e [0, T] and h(.) are completely monotonic in (0, oo). To
show the above assertion, differentiating (3) wih respect to 2, we
have

+=f()(+)++ g(t, ), +(0, )= h(2).
Since g(t, 2)>=0 and h(2)>__0, it follows that +(t, 2)>=0. Similarly, n-
times differentiation of (3) leads us to

kl+ko.=n

+... +f()(+) c,,..., +,
kl+ +kj=n
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+n2(0, )--- h,(2),
where eaeh e,..., is a positive integer. By the induction hypothesis
and our assumption for f, g, h, it is not difficult to see that +,>__0 or
g0 aeeording as n is odd or even. This formal argument will be
justified under the condition (A) or f, 9, and h given in Theorem 1.

Next suppose that +(t, 0)=0. Then h(0)=0 and f(O)+g(t, 0)=0.
Therefore one can assume that
(4) f(0)=0, g(t, 0)_0, h(0)=0.
Under (4) and the previous assumption, we will show that equation
(3) has the unique nonnegative solution (t, ) in (t, ) e [0, T] [0, c).
But since g(t, 2)0, h(2)0 by (4), g0 and h0., and since f is con-
cave in (0, o) by -f()0, it will be enough to prove (the first part of)
the following

Lemma. Let f be a differentiable concave function on [0, c)
with f(0)=0. Then for every nonnegative continuous function g(t)
on [0, T] and every 0, the equation
( 5 ) 4z’-f()+ g(t), (0)
has the unique nonnegative solution (t) in [0, T]. In particular, if
0 and g(t)O except for t=0, then (t)O in [0, T].

Consider the following equation instead of (5),
( 6 ) ’=f(4z +) + g(t), 4z(O) =,
where + =+ k/0. Suppose that the solution +(t) of (6) has a point to
such that +(t0)< 0. Set t= sup {t< to +(t) 0}. By the mean value
theorem, there exists t.e (t, to) such that +(t)<0, +’(t)<0. This
leads us to the contradiction that +’(t)=f(++(tO)+g(t)>=O. There-
fore the solution of (6) should be nonnegative, so that + =+. Since

f is concave, it follows that

where C=o+ g()d. By Gronwall’s inequality we

<Cexp(If’(O)lt), which completes the proof of the first half of the
lemma. For the latter half, suppose that to inf {t;
(t0=oo if { } is empty). Since t0>0 by o>0, it; follows that ’(to)<O,
which contradicts to that +’(t0) f(+(t;)) + g(t0) g(t0) >0.

3. We now have
Theorem 1. get f(x), (t,,) ad h(,9 be defied for e [0, c),

t e [0, T], 2 e [0, oo)e={2=(2, ..., 2) 2_0} ag atif the following
assumptions.

(A.1) f(0)=0, f is C[0, c) C(0, c) and -f() is CM (=com-
pletely monotonic) in (0, c).

(A.2) g(t, 0)=0, g(t, ) is C([0, T] [0, c)), C in 2 e (0, o)



No. 10] Infinitely Divisible, Distributions 377

=(2=(2, ...,2);20} for each t and all the partial derivatives
nlg,,,...,,,(t, )--D, .Dg(t, ) are C([0, T]X(0, oo)). For each

all the first partial derivatives g,(t, ), i-1, ..., d, are CM in
e (0, ).

(A.3) h(O)-O, h(2) is C([0, c))C((0, o)) and all the first
partial derivatives h are CM in e (0, c).

(A.4) At least one of the following conditions is fulfilled"
(a) f()(0+) is finite for all n, or (b) h(2)0 and g(t,)O for each
t>O.

Under these assumptions we have the following.
( i For each e [0, oo), equation (3) has the unique nonnegative

solution (t, ) in t e [0, T]. For each t, 4(t, ) is C((O, oo)). (t,
and all the partial derivatives ,,,...,(t, 2) are C([0, T]X(0, oo)).
4z(t, 0)--0 and all the first partial derivatives 4,(t, 2) are CM in
e (0, oo) for each t.

(ii) (t, ) can be represented uniquely in the form of
( 7 ) (t, ,) <ct, ,} -4- [ (1 e-<.>)n(dy)

J

by some c e [0, c) and some measure n satisfying n({0})=0 and

(yA 1)nt(dy)< c.
i=l [’0,)

(iii) For each t e [0, T], exp {--(t, 2)} is CM in e (0, c) and
so it is the Laplace transform of an infinitely divisible distribution
supported in [0, c);

y e-<’>lt(dx).( S ) exp {--(t, )}=
0.)

Corollary. For each t [0, T], there exists an infinitely divisible
distribution such that

(9) exp (--f: (s, )ds} =fE0,) e-<’x>t(dx)"

Consider the case d= 1, since the extension to the multidimensional
case is trivial. The first part of (i) follows from the preceding lemma.
The rest of (i)will follow if the argument of the previous section is
justified under assumption (A). To see this, it is enough to show that,
for every n, f()(#(t, 2)) is continuous in [0, T] X (0, oo). This is obvious
in the case (a) of (A.4). Condition (b) of (A.4) implies that h(2)>0
and g(t, 2)>0 for every t e (0, T] and e (0, oo) by (A.2) and (A.3).
Therefore, by the latter half of the preceding lemma, #(t, 2)>0 for
every (t, ) e [0, T] X (0, oo) and hence f()(#(t, 2)) is continuous.

Assertions (ii) and (iii) follow from the general theory on com-
pletely monotonic mapping (see [1]).

4. lurther generalization. The result of the preceding section
can be extended to much more general equation without difficulty.
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Consider the equation
(10) ’=F(, , ), (0, )= h().

Theorem 2. Let F(x, t, ) be defined for (x, t, ) e [0, c) [0, T]
[0, c) and satisfy the following assumptions.

(B.1) F(O, t, 0)=0. F(x, t, ) is C in (x, t, ), C in (x,
for each t and all the partial derivatives

r}n r}nl n.’) (x, t, )=., ,..., D.F. (x, t
are C in (0, c) [0, T] (0, c). For each t, all the first partial
derivatives F (x, t, ) is CM in (x, ) e (0, c)/. For each (t, ),
F(x, t, ) is C[0, ) and -F()(x, t, ) is CM in x e (0, c).

(B.2)=(A.3) of Theorem 1.
(B.3) At least one of the following conditions is fulfiled (a) F

(0+, t, )is finite, or (b) h(2)0 and F(O,t,)O for each tO.
Then the same conclusions as in Theorem I are valid for the

solution (t, ) of (10).
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