86. On the Smoothness of Infinitely Divisible Distributions Corresponding to Some Ordinary Differential Equations

By Sadao Sugitani
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1979)

1. Introduction. In the course of the investigation of the limit theorems of the decomposable Galton-Watson processes, the author [1] has found a class of the infinitely divisible distributions closely related to the following Riccati equations.

Let

$$
\begin{equation*}
\phi(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, B>0 \quad \text { and } \quad m \geqq 0 \tag{1.1}
\end{equation*}
$$

be given. We assume that every $a_{n} \geqq 0$ and $\phi(t)$ converges for all t. Let $\psi(t, \lambda), t \geqq 0$, be the solution of

$$
\begin{equation*}
\frac{d}{d t} \psi(t, \lambda)=-B \psi(t, \lambda)^{2}+\phi(t) \lambda, \quad \psi(0, \lambda)=m \lambda \tag{1.2}
\end{equation*}
$$

with $\lambda \geqq 0$ being a parameter.
Then we have
Theorem 1. (i) For each $t>0$, there exists a probability measure P_{t} on $[0, \infty)$ such that
(ii) P_{t} is infinitely divisible.
(iii) The Lévy measure n_{t} of P_{t} has the finite moments of all order.

The probabilistic proof of (i) will be given in a forthcoming paper [1]. An alternative proof, which can be applied to more general equations, was given by T. Watanabe [2]. If we assume (i), (ii) is easily seen from $a \psi(t, \lambda ; \phi, B, m)=\psi\left(t, \lambda ; a \phi, a^{-1} B, a m\right)$ for any $a>0$. (iii) follows from the fact that $\psi(t, \lambda)$ is C^{∞} at $\lambda=0$.

The purpose of this paper is to show the following
Theorem 2. Suppose that $\sum_{n=0}^{\infty} a_{n}>0$. Then there exists $d(t)>0$ such that

$$
\begin{equation*}
\left|\int_{0}^{\infty} e^{i \lambda x} P_{t}(d x)\right| \leqq \exp \{-d(t) \sqrt{|\lambda|\}} \tag{1.4}
\end{equation*}
$$

for all sufficiently large $|\lambda|$. Therefore P_{t} is absolutely continuous with respect to the Lebesgue measure and the density belongs to $C^{\infty}(R)$.

Remark. If $\sum_{n=0}^{\infty} a_{n}=0$ and $m>0$, it is easily seen that P_{t} is a gamma distribution and the density belongs to $C^{\infty}(\boldsymbol{R}-\{0\})$.
2. Proof of Theorem 2. We first state a lemma which will be shown in § 3.

Lemma 2.1.

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}(\sqrt{\lambda})^{-1} \int_{0}^{t} \psi(s, \lambda) d s=\int_{0}^{t} \sqrt{B^{-1} \phi(s)} d s>0, \quad t>0 . \tag{2.1}
\end{equation*}
$$

Without loss of generality we assume that $t=1$. By Theorem 1, there exists $c \geqq 0$ and a measure $n(d y)$ on $[0, \infty)$ with $n(\{0\})=0$ such that

$$
\int_{0}^{1} \psi(s, \lambda) d s=c \lambda+\int_{0}^{\infty}\left(1-e^{-\lambda y}\right) n(d y) .
$$

But by (2.1), we have $c=0$ and so

$$
\begin{equation*}
\int_{0}^{1} \psi(s, \lambda) d s=\int_{0}^{\infty}\left(1-e^{-\lambda y}\right) n(d y)=\lambda \int_{0}^{\infty} e^{-\lambda y} n(y) d y \tag{2.2}
\end{equation*}
$$

where $n(y)=n((y, \infty))$. Hence by (2.1), we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sqrt{\lambda} \int_{0}^{\infty} e^{-\lambda y} n(y) d y=\int_{0}^{1} \sqrt{B^{-1} \phi(s)} d s \equiv A_{1}>0 . \tag{2.3}
\end{equation*}
$$

Therefore by Theorem 4.3 in [3, p. 192],

$$
\begin{equation*}
\lim _{y \rightarrow 0}(\sqrt{y})^{-1} \int_{0}^{y} n(z) d z=\Gamma\left(\frac{3}{2}\right)^{-1} A_{1} \equiv A_{2}>0 . \tag{2.4}
\end{equation*}
$$

Since $2^{-1} y n\left(2^{-1} y\right) \geqq \int_{2-1 y}^{y} n(z) d z \geqq 2^{-1} y n(y)$, we have by (2.4),

$$
\begin{equation*}
4 A_{2}>\varlimsup_{y \rightarrow 0} \sqrt{y} n(y) \geqq \lim _{y \rightarrow 0} \sqrt{y} n(y)>2^{-1}(\sqrt{2}-1) A_{2} \equiv A_{3}>0 . \tag{2.5}
\end{equation*}
$$

Take $\sqrt{A_{4}}<4^{-1} A_{2}^{-1} A_{3}$, then it follows from (2.4) and (2.5) that

$$
\begin{align*}
\int_{0}^{y} z^{2} n(d z) & =\int_{0}^{y} 2 z(n(z)-n(y)) d z \geqq \int_{0}^{A_{4} y} 2 z\left(n\left(A_{4} y\right)-n(y)\right) d z \tag{2.6}\\
& =A_{4}^{2} y^{2}\left(n\left(A_{4} y\right)-n(y)\right) \geqq A_{4}^{2} y^{2}\left(A_{3}\left(\sqrt{A_{4} y}\right)^{-1}-4 A_{2}(\sqrt{y})^{-1}\right) \\
& \equiv A_{5} \sqrt{y^{3}},
\end{align*}
$$

for all sufficiently small y. Therefore we have

$$
\begin{align*}
& \left|\int_{0}^{\infty} e^{i \lambda y} P(d x)\right|=\exp \left\{-\int_{0}^{\infty}(1-\cos (\lambda y)) n(d y)\right\} \tag{2.7}\\
& \quad \leqq \exp \left\{-\int_{0}^{|\lambda|-1} 4^{-1} \lambda^{2} y^{2} n(d y)\right\} \leqq \exp \left\{-4^{-1} A_{5} \sqrt{|\lambda|}\right\}
\end{align*}
$$

for all sufficiently large $|\lambda|$.
3. Proof of Lemma 2.1. In this section, $\psi_{m}(t, \lambda)$ denotes the unique solution of

$$
\begin{equation*}
\frac{d}{d t} \psi_{m}(t, \lambda)=-B \psi_{m}(t, \lambda)^{2}+\phi(t) \lambda, \quad \psi_{m}(0, \lambda)=m \lambda . \tag{3.1}
\end{equation*}
$$

Proposition 3.1.

$$
\begin{gather*}
0 \leqq \psi_{0}(t, \lambda) \leqq \sqrt{B^{-1} \phi(t) \lambda}, \quad t \geqq 0 \tag{3.2}\\
\lim _{\lambda \rightarrow \infty}(\sqrt{\lambda})^{-1} \psi_{0}(t, \lambda)=\sqrt{B^{-1} \phi(t)}, \quad t>0 . \tag{3.3}
\end{gather*}
$$

The convergence in (3.3) is monotone.

$$
\begin{equation*}
0 \leqq \psi_{m}(t, \lambda)-\psi_{0}(t, \lambda) \leqq \frac{m \lambda}{1+t B m \lambda}, \quad t \geqq 0 . \tag{3.4}
\end{equation*}
$$

We first prove Lemma 2.1, assuming Proposition 3.1. If $m=0$, then (2.1) follows from (3.2) and (3.3). If $m>0$, then (2.1) follows from the result of the case $m=0$ and (3.4).

We now proceed to the proof of Proposition 3.1. By (3.1), $\psi_{0}(t, \lambda)=\int_{0}^{t} \lambda \phi(s) \exp \left\{-\int_{s}^{t} B \psi_{0}(r, \lambda) d r\right\} d s \geqq 0$. If there exists $T>0$ such that $\psi_{0}(T, \lambda)>\sqrt{B^{-1} \phi(T) \lambda}$, set $t_{0}=\sup \left\{t<T ; \psi_{0}(t, \lambda) \leqq \sqrt{B^{-1} \phi(t) \lambda}\right.$. Then we get a contradiction;

$$
\begin{aligned}
\psi_{0}(T, \lambda) & =\psi_{0}\left(t_{0}, \lambda\right)+\int_{t_{0}}^{T}\left(-B \psi_{0}(t, \lambda)^{2}+\phi(t) \lambda\right) d t \\
& \leqq \psi_{0}\left(t_{0}, \lambda\right) \leqq \sqrt{B^{-1} \phi\left(t_{0}\right) \lambda} \leqq \sqrt{B^{-1} \phi(T) \lambda .}
\end{aligned}
$$

Next we shall show (3.3). Set

$$
\begin{equation*}
\theta(t, \lambda)=(\sqrt{\lambda})^{-1} \psi_{0}(t, \lambda) . \tag{3.5}
\end{equation*}
$$

By (3.2), we have

$$
\begin{equation*}
0 \leqq \theta(t, \lambda) \leqq \sqrt{B^{-1} \phi(t)} \tag{3.6}
\end{equation*}
$$

$\theta(t, \lambda)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d t} \theta(t, \lambda)=\sqrt{\lambda}\left(-B \theta(t, \lambda)^{2}+\phi(t)\right) \geqq 0, \tag{3.7}\\
\theta(0, \lambda)=0 .
\end{array}\right.
$$

Differentiating with respect to λ,

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \frac{\partial \theta}{\partial \lambda}(t, \lambda)=-2 B \sqrt{\lambda} \theta(t, \lambda) \frac{\partial \theta}{\partial \lambda}(t, \lambda)+(2 \sqrt{\lambda})^{-1}\left(-B \theta(t, \lambda)^{2}+\phi(t)\right), \\
\frac{\partial \theta}{\partial \lambda}(0, \lambda)=0 .
\end{array}\right.
$$

Since $-B \theta(t, \lambda)^{2}+\phi(t) \geqq 0$ by (3.6), $\frac{\partial \theta}{\partial \lambda}(t, \lambda) \geqq 0$ and hence $\theta(t, \lambda)$ is increasing in λ. If we set $\eta(t)=\lim _{\lambda \rightarrow \infty} \theta(t, \lambda)$, then by (3.2) and (3.7), we have

$$
\begin{align*}
0 & =\lim _{\lambda \rightarrow \infty} \lambda^{-1} \psi_{0}(t, \lambda)=\lim _{\lambda \rightarrow \infty}(\sqrt{\lambda})^{-1} \theta(t, \lambda) \tag{3.8}\\
& =\lim _{\lambda \rightarrow \infty} \int_{0}^{t}\left(-B \theta(s, \lambda)^{2}+\phi(s)\right) d s=\int_{0}^{t}\left(-B \eta(s)^{2}+\phi(s)\right) d s .
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
\eta(t)=\sqrt{B^{-1} \phi(t)} \quad \text { a.e. } t . \tag{3.9}
\end{equation*}
$$

Since both sides in (3.9) are increasing and the right side is continuous, (3.9) holds for all $t>0$. This completes the proof of (3.3). By the uniqueness of the solution of (3.1) we have $\psi_{m}(t, \lambda) \geqq \psi_{0}(t, \lambda)$. Set $\xi(t)$ $=\psi_{m}(t, \lambda)-\psi_{0}(t, \lambda)$. Then by (3.1),

$$
\left\{\begin{array}{l}
\frac{d \xi}{d t}(t)=-B\left(\psi_{m}(t, \lambda)-\psi_{0}(t, \lambda)\right)\left(\psi_{m}(t, \lambda)+\psi_{0}(t, \lambda)\right) \leqq-B \xi(t)^{2} \\
\xi(0)=m \lambda
\end{array}\right.
$$

which implies (3.4).

References

[1] S. Sugitani: On the limit distributions of decomposable Galton-Watson processes. Proc. Japan Acad., 55A, 334-336 (1976).
[2] T. Watanabe: Infinitely divisible distributions and ordinary differential equations. Ibid., 55A, 375-378 (1979).
[3] D. V. Widder: The Laplace Transform. Princeton University Press, Princeton, New Jersey (1946).

