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85. On a Diophantine Equation

By Sabur6 UCHIYAMA
Institute of Mathematics, University of Tsukuba

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1979)

The purpose of this note is to prove the following
Theorem. The only integer solutions of the Diophantine equation

( 1 ) 3y-- x +2x
are given by x=0, 1, 2 and 24.

By a classical theorem o A. Thue on the elliptic Diophantine
equation we know that the equation (1) has only finitely many solu-
tions in integers x and y. *) In order to effectively determine all the solu-
tions o (1), we shall make use of some results due to W. Ljunggren
[1], [2], ad [3].

We write the equation (1) in the orm
y x(x +2)

and distinguish three cases according as x0, 1 or 2 (mod 3).
Solutions with x=-O (mod 3). Write x=3x. We have then y=x

(9x+ 2), where d g. c.d. (x, 9x+ 2) 1 or 2.
I x is an odd integer, then d= 1 and we have x= Y, 9x+2=X

for some integers X, Y with g.c.d. (X, Y)=I. Eliminating x from
these equations, we get X-9Y*=2; but this equation has no integer
solutions X, Y, since the congruence X--2 (mod 3) is insoluble.

If xl is an even integer, then dl=2 and so x 2Y, 9x-b2=2X for
some integers X, Y with g.c.d. (X, Y)= 1. Eliminating x, we get the
equation
( 2 ) X2-18Y4 1.
which can be rewritten in the form X-2(3Y)= 1.

Now, the solutions in non-negative integers u, v of the equation
u-2v 1

are given by u=u, v=v. (m=0, 1, 2,...), where
un -t- /-v (1 + r-)n (n= 0, 1, 2, ).

The sequences u, Vn are determined by the relations
u0=l, u1=1, u/=2u/u_ (nl),
v0=0, v=l, v+=2v+v_ (n__>_l).

Lemma 1. We have for all mO
* In fact, the equation (1) arises from a problem co.ncerning MacMahon’s

’chromatic’ triangles in graph theory and, according to M. Gardner, it is known
that the only solutions o. (1) with x =< 5,000 are as listed in the theorem.
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g.c.d. (u, v)--g.c.d. (u, u.)--g.c.d. (u., v)--1.
Proo will be easily carried out by noticing the relations

( 3 ) u--2v=(-1) (n>=O)
and
( 4 ) u. u-t- 2Vn (n >__ 0)
which is a special case
( 5 ) u/=uu+2vv (m, n>=O).

Lemma 2. We have

and

Proof.

u--0 (rood 3) if and only if n=2 (mod 4)

v=0 (mod 3) if and only if n=O (mod 4).
Indeed, we observe that

n----0 1 2 3 4 5 6 7 (mod8)
u----1 1 0 1 2 2 0 2 (mod3)
v----0 1 2 2 0 2 1 1 (mod3).

This can be readily verified by making use ot the defining relations or
u and v, or o the relations (5) and
( 6 ) v+-uv+uv (m, n>=O).

Now suppose that we have %--3Y (m>=O) tor some integer Y.
Here v---4uuv since we have, by (6), V---2UnV or all n.

Case 1. m=0 (mod 4). In this case v is a multiple o 3 by Lem-
ma 2, and we have by Lemma l

or some non-negative integers r, s, t with 2rst- Y. Putting these into
the relations (3) and (4) (both with n-m) gives

r-18t=1 and s=r+18P.
Eliminating t from these equations, we thus otain the equation
( 7 ) s 2r- 1.

W. Ljunggren [2, 2] has proved that the only solutions in posi-
tive integers (or, equivalently, non-negative integers) r, s o the equa-
tion (7) are

(r, s)= (1, 1) and (13, 239)
the tormer o these will give t--O, so that v-O, m-O, Y-O and hence
x--O, and the latter does not satisfy our requirement and there are no
corresponding solutions x.

Case 2. m--2 (mod 4). By Lemma 2u is then divisible by 3 and
we have, by Lemma 1 again,

u 3r, u. s, v t
for some positive integers r, s, t with 2rst= Y. We have, by (4) (with
n=m), s=9r+2t, which is. obviously impossible, since g.c.d. (t, 3)

1 by Lemma 1, ad 2 is a (uniques) quadratic non-residue (rood 3).
Case 3. m--1 (mod2). In this case u is a multiple of 3 by

Lemma 2, and we have, by Lemma 1,
u:r, u.:3s, v:t
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for some positive integers r, s, t with 2rst= Y. The relations (3) and
(4) (with n-m) will yield the equations

#--2t=-1 and 3d=#+2t,
whence
( 8 ) 3s-2#- 1.

By a theorem o Ljunggren [1, Satz 3] the equation (8) has at most
one solutioa in positive integers r, s hence, r--s-- 1 is the unique posi-
tive solution o (8), giving t--l, u--v--I and so m=l. Hence we
have v v-- 12, x 6Y 2v-- 24.

Solutions with x--1 (mod 3). Write x-3x+l. Then we have
y2--(3xl+1)(3x+2xl+l), where d2=g.c.d. (3x1+1, 3x+2x+l)=l or
2.

If 3x+ 1 is odd, then d. 1 and we have 3x/ 1 y2, 3x+2x+ 1
=X for some integers X, Y with g.c.d. (X, Y)-1, and elimination of
x will yield the equation
( 9 ) 3X2- Y=2.

This equation has an obvious solution X= Y-l, and we find by
applying a theorem o Ljunggren [3, Satz II] that X-Y-1 is the
unique positive solution o (9), and this gives the solution x--Y--1 o
the equation (1).

If 3xl/ 1 is even, then d2- 2 and we have 3x+ 1 2Y, 3x+2x+ l
=2X or some integers X, Y with g.c.d. (X, Y)-1 but this is impos-
sible since the congruence 2Y--1 (rood 3) has no solutions in Y.

Solutions with x--2 (rood 3). Put x-3x-l. Then we have y
--(3x--1)(3x--2x+l), where g.c.d. (3x-1, 3x-2x+l)-I or 2.

Since 3x-1--Y is impossible in integers x, Y, we must have

3x- 1 even, and so 3x- 1 2Y, 3x-2x+ 1 2X for some integers X,
Y with g.c.d. (X, Y)= 1, whence
(10) 3X2-2Y’- 1.

The equation (10), which is satisfied by X-Y-1, has at most one
solution in positive integers X and Y, again by Ljunggren’s [.3, Satz
II]. Hence, X--Y= 1 is the unique positive solution of (10), and so
x=2Y=2 is the only integer solution of the equation (1) with x----2
(rood 3).

The proof of our theorem is now complete.
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