85. On a Diophantine Equation

By Saburô UchiYama
Institute of Mathematics, University of Tsukuba
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1979)

The purpose of this note is to prove the following
Theorem. The only integer solutions of the Diophantine equation (1)

$$
3 y^{2}=x^{3}+2 x
$$

are given by $x=0,1,2$ and 24 .
By a classical theorem of A. Thue on the elliptic Diophantine equation we know that the equation (1) has only finitely many solutions in integers x and $y .{ }^{*)}$ In order to effectively determine all the solutions of (1), we shall make use of some results due to W. Ljunggren [1], [2], and [3].

We write the equation (1) in the form

$$
y^{2}=\frac{1}{3} x\left(x^{2}+2\right)
$$

and distinguish three cases according as $x \equiv 0,1$ or $2(\bmod 3)$.
Solutions with $x \equiv 0(\bmod 3)$. Write $x=3 x_{1}$. We have then $y^{2}=x_{1}$ $\cdot\left(9 x_{1}^{2}+2\right)$, where $d_{1}=$ g.c.d. $\left(x_{1}, 9 x_{1}^{2}+2\right)=1$ or 2 .

If x_{1} is an odd integer, then $d_{1}=1$ and we have $x_{1}=Y^{2}, 9 x_{1}^{2}+2=X^{2}$ for some integers X, Y with g.c.d. $(X, Y)=1$. Eliminating x_{1} from these equations, we get $X^{2}-9 Y^{4}=2$; but this equation has no integer solutions X, Y, since the congruence $X^{2} \equiv 2(\bmod 3)$ is insoluble.

If x_{1} is an even integer, then $d_{1}=2$ and so $x_{1}=2 Y^{2}, 9 x_{1}^{2}+2=2 X^{2}$ for some integers X, Y with g.c.d. $(X, Y)=1$. Eliminating x_{1}, we get the equation

$$
\begin{equation*}
X^{2}-18 Y^{4}=1 \tag{2}
\end{equation*}
$$

which can be rewritten in the form $X^{2}-2\left(3 Y^{2}\right)^{2}=1$.
Now, the solutions in non-negative integers u, v of the equation

$$
u^{2}-2 v^{2}=1
$$

are given by $u=u_{2 m}, v=v_{2 m}(m=0,1,2, \cdots)$, where

$$
u_{n}+\sqrt{2} v_{n}=(1+\sqrt{2})^{n} \quad(n=0,1,2, \cdots)
$$

The sequences u_{n}, v_{n} are determined by the relations

$$
\begin{array}{llll}
u_{0}=1, & u_{1}=1, & u_{n+1}=2 u_{n}+u_{n-1} & (n \geqq 1), \\
v_{0}=0, & v_{1}=1, & v_{n+1}=2 v_{n}+v_{n-1} & (n \geqq 1) .
\end{array}
$$

Lemma 1. We have for all $m \geqq 0$

[^0]$$
\text { g.c.d. }\left(u_{m}, v_{m}\right)=\text { g.c.d. }\left(u_{m}, u_{2 m}\right)=\text { g.c.d. }\left(u_{2 m}, v_{m}\right)=1 .
$$

Proof will be easily carried out by noticing the relations

$$
\begin{equation*}
u_{n}^{2}-2 v_{n}^{2}=(-1)^{n} \quad(n \geqq 0) \tag{3}
\end{equation*}
$$

and
(4)

$$
u_{2 n}=u_{n}^{2}+2 v_{n}^{2} \quad(n \geqq 0)
$$

which is a special case of
(5)

$$
u_{m+n}=u_{m} u_{n}+2 v_{m} v_{n} \quad(m, n \geqq 0)
$$

Lemma 2. We have
and

$$
u_{n} \equiv 0(\bmod 3) \quad \text { if and only if } n \equiv 2(\bmod 4)
$$

$$
v_{n} \equiv 0(\bmod 3) \quad \text { if and only if } n \equiv 0(\bmod 4)
$$

Proof. Indeed, we observe that

$n \equiv 0$	1	2	3	4	5	6	7	$(\bmod 8)$
$u_{n} \equiv 1$	1	0	1	2	2	0	2	$(\bmod 3)$
$v_{n} \equiv 0$	1	2	2	0	2	1	1	$(\bmod 3)$.

This can be readily verified by making use of the defining relations for u_{n} and v_{n}, or of the relations (5) and
(6)

$$
v_{m+n}=u_{n} v_{m}+u_{m} v_{n} \quad(m, n \geqq 0)
$$

Now suppose that we have $v_{4 m}=3 Y^{2}(m \geqq 0)$ for some integer Y. Here $v_{4 m}=4 u_{m} u_{2 m} v_{m}$ since we have, by (6), $v_{2 n}=2 u_{n} v_{n}$ for all n.

Case 1. $m \equiv 0(\bmod 4)$. In this case v_{m} is a multiple of 3 by Lemma 2, and we have by Lemma 1

$$
u_{m}=r^{2}, \quad u_{2 m}=s^{2}, \quad v_{m}=3 t^{2}
$$

for some non-negative integers r, s, t with $2 r s t=Y$. Putting these into the relations (3) and (4) (both with $n=m$) gives

$$
r^{4}-18 t^{4}=1 \quad \text { and } \quad s^{2}=r^{4}+18 t^{4}
$$

Eliminating t from these equations, we thus otain the equation (7)

$$
s^{2}=2 r^{4}-1
$$

W. Ljunggren [2, § 2] has proved that the only solutions in positive integers (or, equivalently, non-negative integers) r, s of the equation (7) are

$$
(r, s)=(1,1) \quad \text { and } \quad(13,239) ;
$$

the former of these will give $t=0$, so that $v_{m}=0, m=0, Y=0$ and hence $x=0$, and the latter does not satisfy our requirement and there are no corresponding solutions x.

Case 2. $m \equiv 2(\bmod 4) . \quad$ By Lemma $2 u_{m}$ is then divisible by 3 and we have, by Lemma 1 again,

$$
u_{m}=3 r^{2}, \quad u_{2 m}=s^{2}, \quad v_{m}=t^{2}
$$

for some positive integers r, s, t with $2 r s t=Y$. We have, by (4) (with $n=m$), $s^{2}=9 r^{4}+2 t^{4}$, which is obviously impossible, since g.c.d. ($t, 3$) $=1$ by Lemma 1 , and 2 is a (uniques) quadratic non-residue $(\bmod 3)$.

Case 3. $m \equiv 1(\bmod 2)$. In this case $u_{2 m}$ is a multiple of 3 by Lemma 2, and we have, by Lemma 1,

$$
u_{m}=r^{2}, \quad u_{2 m}=3 s^{2}, \quad v_{m}=t^{2}
$$

for some positive integers r, s, t with $2 r s t=Y$. The relations (3) and (4) (with $n=m$) will yield the equations

$$
r^{4}-2 t^{4}=-1 \quad \text { and } \quad 3 s^{2}=r^{4}+2 t^{4}
$$

whence
(8)

$$
3 s^{2}-2 r^{4}=1 .
$$

By a theorem of Ljunggren [1, Satz 3] the equation (8) has at most one solution in positive integers r, s; hence, $r=s=1$ is the unique positive solution of (8), giving $t=1, u_{m}=v_{m}=1$ and so $m=1$. Hence we have $v_{4 m}=v_{4}=12, x=6 Y^{2}=2 v_{4}=24$.

Solutions with $x \equiv 1(\bmod 3)$. Write $x=3 x_{1}+1$. Then we have $y^{2}=\left(3 x_{1}+1\right)\left(3 x_{1}^{2}+2 x_{1}+1\right)$, where $d_{2}=$ g.c.d. $\left(3 x_{1}+1,3 x_{1}^{2}+2 x_{1}+1\right)=1$ or 2.

If $3 x_{1}+1$ is odd, then $d_{2}=1$ and we have $3 x_{1}+1=Y^{2}, 3 x_{1}^{2}+2 x_{1}+1$ $=X^{2}$ for some integers X, Y with g.c.d. $(X, Y)=1$, and elimination of x_{1} will yield the equation (9)

$$
3 X^{2}-Y^{4}=2
$$

This equation has an obvious solution $X=Y=1$, and we find by applying a theorem of Ljunggren [3, Satz II] that $X=Y=1$ is the unique positive solution of (9), and this gives the solution $x=Y^{2}=1$ of the equation (1).

If $3 x_{1}+1$ is even, then $d_{2}=2$ and we have $3 x_{1}+1=2 Y^{2}, 3 x_{1}^{2}+2 x_{1}+1$ $=2 X^{2}$ for some integers X, Y with g.c.d. $(X, Y)=1$; but this is impossible since the congruence $2 Y^{2} \equiv 1(\bmod 3)$ has no solutions in Y.

Solutions with $x \equiv 2(\bmod 3)$. Put $x=3 x_{1}-1$. Then we have y^{2} $=\left(3 x_{1}-1\right)\left(3 x_{1}^{2}-2 x_{1}+1\right)$, where g.c.d. $\left(3 x_{1}-1,3 x_{1}^{2}-2 x_{1}+1\right)=1$ or 2 .

Since $3 x_{1}-1=Y^{2}$ is impossible in integers x_{1}, Y, we must have $3 x_{1}-1$ even, and so $3 x_{1}-1=2 Y^{2}, 3 x_{1}^{2}-2 x_{1}+1=2 X^{2}$ for some integers X, Y with g.c.d. $(X, Y)=1$, whence

$$
\begin{equation*}
3 X^{2}-2 Y^{4}=1 \tag{10}
\end{equation*}
$$

The equation (10), which is satisfied by $X=Y=1$, has at most one solution in positive integers X and Y, again by Ljunggren's [3, Satz II]. Hence, $X=Y=1$ is the unique positive solution of (10), and so $x=2 Y^{2}=2$ is the only integer solution of the equation (1) with $x \equiv 2$ $(\bmod 3)$.

The proof of our theorem is now complete.

References

[1] W. Ljunggren: Über die unbestimmte Gleichung $A x^{2}-B y^{4}=C$. Archiv for Math. og Naturvid. (oslo), 41, nr. 10 (1938).
[2] -: Zur Theorie der Gleichung $x^{2}+1=D y^{4}$. Avh. det Norske Vid.-Akad. Oslo. I. Mat.-Naturvid. Klasse, nr. 5 (1942).
[3] -: Ein Satz über die diophantische Gleichung $A x^{2}-B y^{4}=C(C=1,2,4)$. Tolfte Skandinaviska Matematikerkongressen i Lund (1953), pp. 188-194.

[^0]: *) In fact, the equation (1) arises from a problem concerning MacMahon's 'chromatic' triangles in graph theory and, according to M. Gardner, it is known that the only solutions of (1) with $x \leqq 5,000$ are as listed in the theorem.

