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0. In this note we obtain a dimension formula for the vector
spaces of Siegel cusp forms of degree three. Our main theorem is the
following

Theorem. The dimension of the vector space of Siegel cusp

forms of weight k>=5 with respect to F3(1) (/=3) is equal t.o
(2-3-5-7-/(2k 2)(2k 3)(2k 4)(2k 5)(2k- 6) 2-3-5-l(2k-4)

A-2-s3-3/)Hv v:v(1--p-)(1--p-)(1--p-).
Details and proofs will be published elsewhere.
1. Let (R) be the Siegel upper half plane o degree g, Fq(1)the

principal congruence subgroup o the Siegel modular group o level
/(/>__3), *(1) the quotient complex analytic space o (R) by Fq(1), and
let *(1) and *(1) be the Satake and the Voronoi compactification
*(1), respectively, which are constructed in [7] and in [6]. *(1) is
non-singular i g_<_4 and there exists a morphism s" *(1)-*(1) which
is identity on (R)*(1).

Let Lq be the line bundle on (R)*(1) determined by the automorphic
actor on (R)"

M= ]det (CZ+D), M e Sp (g,Z) and Ze(R).

L is extended to *(1) as a line bundle by Siegel’s -operator, which
we denote by/,. Let /q be the pullback of f,q to *(1). Put
=*(/)--(R)*(/), which is a divisor with .simple normal crossings, if
gg4. Then we have a vanishing theorem"

Theorem. H(*(1), ((k-z/(g))=0, if g<=4, 1=3, k=g+2, and
p>0.

Since the vector space of Siegel cusp forms of degree g and weight
k with respect to F(1) is isomorphic to H(*(1), @(kL-z/(g)), by this
theorem and Riemann-Roch-Hirzebruch’s theorem the dimension of
this space is written as a sum of intersection numbers.

2. Let X be an n-dimensional complex manifold and z/a reduced
divisor with simple normal crossings on X. Put X=X-

Definition. Let 0x(log A) be the subsheaf of 0x which is generated
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byz--,3 z3, 3 ,..., 3 atxeX, where we chose a systemz z z/
o local coordinates (z,..., z) around x so that A is defined by z... z
=0 around x. Px(log A) is dual to 9(log A) over (C)x which is defined
in [2]. Put c(X)=c(O(log A)) which we call the ]-th logarithmic
chern class of X in X.

Let A be as above and put A=)D where each D is. an irreducible
divisor on X. We always denote a divisor, its cohomology class, and
the line bundle associated with the divisor by the same symbol. Let
A be the k-th undamental symmetric unction o D’s or kl and
A0--1, and let c(X) be the ]-th chern class o X. Then

Proposition. c(X)--X=o_(X). A.
By the relation (g+ 1)L=--c(g) and this proposition, the dimen-

sion of the veetor space o Siegel cusp forms is written as a polynomial
o e(g)’s and A’s if g_>_4, where (g) is the ]-th logarithmic ehern
class of (R)*(1) in *(1). The terms which do not include A are calcu-
lated by the following theorem. We identify any eohomology class in
H(g/(*(1), Z) with its. value at the fundamental cycle.

Theorem ([5]). Let v be an invarian$ measure on (R), then
,(g). c(g)=a(], ..., ])v((R)g/I’(1)),

where j+. q-]=2-g(g q- 1) and a(j, ., j) is a constant depending
only on v.

3. The ollowing lemma is. an analogue o the adjunction ormula.
Lemma. Let X, X, and A be as above, and let DcX--X be an ir-

reducible divisor and D, D,... other irreducible divisors contained
in X--X. Put D--D--D, then

e(X) D-(D) (]-- 0, ..., n),
where the right hand side is the logarithmic chern class of D in D.

Let X(R)*a(1)--(R)a*(1) be an irreducible divisor, then X is a fiber
space over *(1) and this fibering factors through s :=*(/)-+*(/) as a
equi-dimensional morphism " X-+=*(1). The general fiber of is a
2-dimensional abelian variety. The following theorem is an analogue
o the canonical line bundle formula of elliptic surfaces.

Theorem. There exists a cohomology class e on *(1) such tha$

e(3)lx=u*(e) (]=0,..., 6).
This theorem is. proved by the above lemma and the ollowing ex-

act sequence of locally free sheaves"

0-+*2)(log z/(2))-/2(log zJ(3)’ f3 X)-S2r/)(log 1(3)’ f X)-+0,
where z/(3)’ is the closure of z/(3)--X in (R)*(1).

By this theorem the vanishing of intersection numbers such as
e(3)X and (3)X is proved.

4. Let T be an n-dimensional algebraic torus over complex hum-
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ber field and TcX a non-singular torus embedding (cf. [4]). Torus
embeddings are classified by "rational partial polyhedral decomposi-
tion" in R. Let D, D, be irreducible divisors oa X contained in
X--T and , the 1-dimensional cone i R corresponding to D, and let
a=(a,..., a) be the primitive vector which spanns , where a is.
said to be primitive if and only if a(]= 1, ..., n) are integers and re-
latively prime. Then

Theorem. Xa DO (]=1, ., n), where means the linear
equivalence. Note that the left hand side is locally a finite sum even

if X is not of finite type.
*(1) is constructed by gluing copies o quotients o torus embed-

dings and if X,X,Xc*(1)--(R)*(1) are irreducible divisors, then X
X X is contained i a single quotient o a torus embedding i and

only if s(X X. X) is 0-dimensional. I this case we can calculate
XXX etc. by this theorem.itersectioa numbers, such as ,

5. Let X be as in 3 and Yc*(1)-(R)*(l) an irreducible divisor,
then it ollows that

L.x*(Y)’[X] *(LY4)[X] 0,
since *(1) is 3-dimensional. Although the intersection llumber

zc*(L.YO(X :)[X]
does not vanish, we can calculate this. by the result in 4. From these

L oX and LX4X.,equations as above we can derive relations among ,
etc., where X, X.c*(1)--(R)*(1) are irreducible divisors, and we can cal-

XXculate them. Similarly we can derive relations among XX., ,
and XX, etc., but to calculate them we lack one relation.

6. To calculate the remaining intersection numbers, we use the
results of [3] concerning theta constants.

Definition. Let r e q, then r is. said to be reducible if and only
if r is equivalent with respect to Fq(1) to the following point"

There exist thirty six theta constants o degree three.
Theorem. r (R)8 is reducible if and only if at least two theta

constants vanish at r.

Theorem. Let X18 be the product of thirty six theta constants and
X4o the 35-th fundamental symmetric function of the 8-th powers of
thirty six theta constants. Then ) and Xo are Siegel cusp forms
with respect to F3(1) of weight 18 and 140, respectively.

Let I and J be the zero loci of the sections, of 18L and 140L de-
termined by s and 270, respectively, and let i aId d be the respective
closures of I and J iI1 *(1). Then we have

18Li+2/I(3),
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and
140LJ-t- 15/(3).

Let Rq be (reducible points of (R)q}/Fq(I) and Rq its closure ia (R)*(1),
and let X be as i 3. We put R(X)-:-(R) and R(/(3))- the urioa
o:f R(X), wheX moves irreducible divisors i *(l)--(R)*(1). Thea I.J
has support at by the above theorem and it is seen that i.j also has
support at R(/(3)) by considering the limits o theta constants whea
tends to /(3).

Therefore we obtained the ollowing equation"
(18L--2/z/(3))(140,-- 15/z/(3)) i.j=nR+nR(z/(3)),

where n and n. are the multiplicity of i.j at R and R(z/(3)). By cal-
culating n and n, and replacing R(z/(3)) by the rational equivalence
we have the ollowing

Theorem. (3z/(3)+A(3))l=24R+601LA(3)-252L], where
is defined as in 2.

Let X, X be as ia 5, thea it is. easily see that ,X.=0.
X.XTherefore multiplying the equatioa in the theorem by ., we derive

the relatio among intersectio numbers which we lacked ia 5 aad
we ca calculate them. Let X be as above. We can calculate LX by
the result i 4, and we ca calculateRX,RX, ad RX. Hence
multiplying the equation in the theorem by L]X, LX, and X, we can
calculate LX, LX, and X. Especially L]X vanishes.

By [1, 16.4] and [5], there exists a relation" 15(3)=32.(3).
Therefore we have c.(3)X=0.

Thus. we calculated the all intersection numbers which appear in
the Riemann-Roch-Hirzebruch’s ormula and from this result the main
theorem is proved.

7. Now we shall discuss, the problem to obtain the dimension or-
mula of Siegel cusp orms of degree g4. It is. not known that he
Voronoi compactification of degree g >__ 5 is non-singular or not. There-
ore we can hope that we can obtain the dimension ormula only of
degree our. But there exist three difficulties.

First we do not have the result to write the set o reducible
points of (R) as zeros oi Siegel cusp forms. To obtain this result it is
necessary to solve the following

Conjecture. v e S is. reducible if and only if at least three theta
constants vanish at r.

In [3] the theorem to write R as zeros o theta constants is ob-
tained by the theory of curves. Since the point of (R) does not corres-
pond to a Jacobian variety of genus 4 in general, the theory oi curves
will be no longer applied. But in the case o degree three, we did not
used the family oi Jacobian varieties o genus 3 over *(1), but the
amily of Jacobian varieties o genus 2 over *(l) which appears in
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the boundary of *(1). In the case of degree four we use the family
of Jacobian varieties z" X*(1) of genus three. Therefore it suffices
to know the common zeros, in X of the limits of three theta constants
of degree four when r tends to X, which is weeker problem than the
above conjecture and we can hope that the theory of curves can be p-
plied to this. problem.

Secondly the fibering of X above is not equi-dimensional.
Thirdly there existed a relation between G(3) and G(3). In the

case degree four, c(4) 0"3) appears in the Riemann-Roch-Hirzebruch’s
formula and (4) (]>_3) is not proportional to (4).

Even if these difficulties are overcome, it will be necessary to ac-
complish a rather tiresome process, of calculation.
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