82. A Generalization of Poincaré Normal Functions on a Polarized Manifold

By Kazuhiko Аомото
Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1979)

1. Recently J. L. Dupont found out the connection between continuous cohomologies of semi-simple Lie groups and integrals of invariant forms over geodesic simplices in symmetric spaces ([5]). In this note we shall study the analytic structure of analogous integrals of rational forms over a simplex-like polyhedron which more or less corresponds to an n-th iterated path, associated with $(n+1)$ intersection points of n-ple hyperplane sections in a polarized manifold. It will be shown that these can be expressed by means of a finite sum of iterated integrals of special 1 -forms in the sense of K. T. Chen, which can be regarded as a natural generalization of abelian integrals on projective algebraic varieties ([8]). The notion of periods of abelian integrals will also be generalized as the part of corresponding "shuffle structures" fixed by monodromy groups.
2. Let (V, E) be an n-dimensional polarized complex manifold. Let $|E|$ be the complete linear system of Cartier divisors associated with the line bundle E. We denote by h the dimension of $H^{\circ}\left(V, \mathcal{O}_{V}(E)\right)$. Consider the space $X=X_{m}$ consisting of sequences of m linearly independent sections $s_{1}, s_{2}, \cdots, s_{m}$ of $H^{0}\left(V, \mathcal{O}_{V}(E)\right) . \quad X_{m}$ is isomorphic to the $\operatorname{Stief}_{m, h}$, the space of sequences of m linearly independent vectors in C^{h}. Let $S_{1}, S_{2}, \cdots, S_{m}$ be m Cartier divisors in $|E|$, associated with $s_{1}, s_{2}, \cdots, s_{m}$, respectively. We shall call this a "configuration of hyperplane sections" and the set of all them "configuration space of hyperplane sections". This is parametrized by X_{m}.

Let W be an algebraic subset of V of codimension 1 such that $V-W$ is affine if W is not empty. We denote by $\Omega^{\circ}(V, * W)$ the space of rational forms on V with poles in W. Let $S_{-n}, S_{-n+1}, \cdots, S_{0}$ be $(n+1)$ Cartier divisors in $|E|$ such that $S_{-n}, S_{-n+1}, \cdots, S_{0}$ and W are in general position.

Definition 1. Let $v_{i},-n \leqq i \leqq 0$, be arbitrary points of $S_{-n} \cap S_{-n+1}$ $\cap \cdots \cap S_{i-1} \cap S_{i+1} \cap \cdots \cap S_{-1} \cap S_{0}$. We consider a simplex-like n polyhedron Δ of class C^{1} disjoint from W, satisfying the following conditions: i) $\partial \Delta_{i_{1}, i_{2}, \ldots, i_{p}}=\bigcup_{j \oplus\left\{i_{1}, \ldots, i_{p}\right\}} \Delta_{j, i_{1}, i_{2}, \ldots, i_{p}}$ where $\Delta_{i_{1}, i_{2}, \ldots, i_{p}}$ denote Δ $\cap S_{i_{1}} \cap \cdots \cap S_{i_{p}} . \quad$ ii) $\Delta_{-n, \cdots, i-1, i+1, \cdots, 0}$ consists of the only one point v_{i}.

This will be called a "fundamental simplex with the vertices v_{0}, v_{1}, \cdots, v_{-n} ".

By making use of the isotopy theorem due to R. Thom, it can be easily seen that such a Δ can be constructed from lower dimensional faces.

We consider the relative analytic space \mathfrak{X} consisting of pairs (V $\left.-W, S_{-n} \cup S_{-n+1} \cup \cdots \cup S_{0}\right),\left\langle S_{-n}, \cdots, S_{0}\right\rangle \in X$, so that we have the natural projection $\pi: \mathfrak{X} \mapsto X$, with the fibre $\left(V-W, S_{-n} \cup \cdots \cup S_{0}\right.$). Let Y be the subset of X such that π becomes singular, namely the configuration $\left\langle S_{-n}, \cdots, S_{0}\right\rangle$ and W are not in general position. Then \mathfrak{X} $-\pi^{-1}(Y)$ is a topological fibre bundle over $X-Y$ with the above fibre.

Now we are interested in the analytic structure of the integral

$$
\begin{equation*}
\tilde{\eta}=\int_{\Delta} \eta, \quad \text { for } \eta \in \Omega^{n}(V, * W) . \tag{1}
\end{equation*}
$$

Lemma 1. η being fixed, $\tilde{\eta}$ depends only on the homotopy class of Δ, provided that $v_{i},-n \leqq i \leqq 0$, are all fixed. Namely let $\Delta(t), 0 \leqq t$ $\leqq 1$, be a continuous family of Δ such that $\Delta_{i_{1}, i_{2}, \ldots, i_{p}}(t) \subset V_{i_{1}, i_{2}, \ldots, i_{p}}=S_{i_{1}}$ $\cap S_{i_{2}} \cap \cdots \cap S_{i_{p}}$ and $\Delta_{i_{1}, i_{2}, \cdots, i_{n}}(t)$ are fixed. Then $\tilde{\eta}$ is independent of t.

For the proof see, for example, [9].
We put $\hat{\Omega}_{I}=\oplus_{0 \leqq q \leqq n-p} \hat{\Omega}_{I}^{q}$ for the ordered sequence $I=\left(i_{1}, i_{2}, \cdots, i_{p}\right)$ where $\hat{\Omega}_{T}^{q}$ denotes $\oplus_{J \supset I} \Omega^{q-|J-I|}\left(V_{J}, *\left(W \cap V_{J}\right)\right.$). When I is empty, we denote $\hat{\Omega}_{\phi}$ simply by $\hat{\Omega}$. Let ε_{I} be the canonical projection from $\hat{\Omega}$ onto $\hat{\Omega}_{I}$. We can define boundary operators \hat{d} and \hat{d}_{I} on $\hat{\Omega}$ and $\hat{\Omega}_{I}$, respectively, as follows:

$$
\begin{align*}
&(\hat{d} \varphi)_{i_{1}, i_{2}, \cdots, i_{p}}=d\left(\varphi_{i_{1}, i_{2}, \cdots, i_{p}}\right)+\sum_{q=1}^{p}(-1)^{q-1} \cdot \varphi_{i_{1}, \cdots, i_{q-1}, i_{q+1}, \cdots, i_{p}}, \tag{2}\\
& \text { for } \varphi=\left(\varphi_{i_{1}, i_{2}, \cdots, i_{p}}\right)_{0 \leq p \leqq n} \in \hat{\Omega},
\end{align*}
$$

on each V_{I}. Then the following is commutative:

Then we have an extended de Rham complex ($\hat{\Omega}, \hat{d}$) with the nilpotent covariant derivation \hat{d}, associated with the configuration $\left\langle S_{-n}, S_{-n+1}\right.$, $\left.\cdots, S_{0}\right\rangle$. We denote by $C\left(V_{I}\right)$ the cell complex in V_{I} over C. Let \hat{C} $=\oplus_{0 \leqq p \leqq n} \hat{C}_{p}, \hat{C}_{p}=\oplus_{I} C_{p-|I|}\left(V_{I}\right)$ be the chain complex with the boundary operation:

$$
\begin{equation*}
(\hat{\partial} c)_{i_{1}, i_{2}, \cdots, i_{p}}=c_{i_{1}, i_{2}, \cdots, i_{p}}-\sum_{j \notin\left\{i_{1}, i_{2}, \cdots, i_{p}\right\}} c_{j, i_{1}, i_{2}, \cdots, i_{p}}(-1)^{p} \tag{4}
\end{equation*}
$$

in V_{I} for $c=\left(c_{I}\right) \in \hat{C}_{n}$.
We now define the natural pairing between $\hat{\Omega}$ and \hat{C} as follows:

$$
\begin{equation*}
\langle\varphi, c\rangle=\sum_{I} \int_{c_{I}} \varphi_{I} . \tag{5}
\end{equation*}
$$

Then we have the Stokes formula:

$$
\begin{equation*}
\langle\hat{d} \varphi, c\rangle=\langle\varphi, \hat{\partial} c\rangle \tag{6}
\end{equation*}
$$

The integral $\tilde{\eta}$ can be regarded as an element of $H^{n}(\hat{\Omega}, \hat{d})$, by taking as $\varphi_{\phi}=\eta$ and $\varphi_{I}=0$ otherwise. Δ itself becomes a cycle.

Proposition 1. $H^{n}(\hat{\Omega}, \hat{d})$ has a filtration F_{I} satisfying the following conditions: i) $F_{I}=H^{*}\left(\hat{\Omega}_{I}, \hat{d}_{I}\right)$, ii) $F_{I} \supset F_{J}$ if $I \subset J$, and iii) $\quad H^{n-|I|}\left(\hat{\Omega}_{I} / \sum_{J \supset I} \hat{\Omega}_{J}, \hat{d}_{I}\right)=F_{I} \cap H^{n-|I|}\left(\hat{\Omega}_{I}, \hat{d}_{I}\right) / \sum_{J \supset I} F_{J} \cap H^{n-|I|}\left(\hat{\Omega}_{I}, \hat{d}_{I}\right)$ $=H^{n-|I|}\left(V_{I}-W \cap V_{I}, C\right)$.

We denote by $H^{0}(X, \Theta(* Y))$ the space of rational vector fields on X with poles only on Y. Then

Proposition 2. For any $\tau \in H^{0}(X, \Theta(* Y))$, the covariant differentiation $\bar{\nabla}$ of the Gauss-Manin connection :

$$
\begin{equation*}
\left\langle\tau, d_{X} \int_{c} \varphi\right\rangle=\int_{c} \nabla_{\tau} \varphi \tag{7}
\end{equation*}
$$

acting on $\mathcal{O}_{X-Y} \cdot H^{*}(\hat{\Omega}, \hat{d})$, satisfies
(8)

$$
\nabla_{\tau} \mathcal{O} \cdot F_{I} \subset \mathcal{O} \cdot F_{I} \oplus \sum_{J \supseteqq I} \mathcal{O} \cdot F_{J} .
$$

This follows from the following
Lemma 2. Let V be an affine variety of dimension n embedded in \boldsymbol{C}^{n+m}. Let $f_{0}, f_{1}, \cdots, f_{n}$ be linearly independent linear functions on C^{n+m}. Let Δ be an n-polyhedron in V satisfying $\partial \Delta=\bigcup_{i=0}^{n} \partial \Delta \cap\left\{f_{i}=0\right\}$. We assume that each f_{j} depends holomorphically on t in an open neighbourhood $U \subset C$. Then

$$
\begin{equation*}
d / d t \int_{\Delta} \eta=\int_{\Delta} \frac{\partial \eta}{\partial t}+\sum_{j=0}^{n} \int_{\partial \Delta \cap\left\{f_{j}=0\right\}} \partial f_{j} / \partial t \cdot \eta / d f_{j} \tag{9}
\end{equation*}
$$

for a holomorphic n-form η on Δ.
According to Proposition 1, there exists a basis $\left\{e_{I}^{(\nu)}, 1 \leqq \nu \leqq \mu_{I}\right\}$ of $H^{n-|I|}\left(V_{I}-V_{I} \cap W, C\right)$ such that each $\left\{e_{J}^{(\nu)} ; 1 \leqq \nu \leqq \mu_{J}, J \supset I\right\}$ forms a basis of $H^{n-|I|}\left(\hat{\Omega}_{I}, \hat{d}_{I}\right)$. Let P_{I} be a system of μ_{I} linearly independent horizontal solutions of the Gauss-Manin connection D_{I} on $H^{n-|I|}\left(\hat{\Omega}_{I} / \sum_{J \supset I} \hat{\Omega}_{J}, \hat{d}_{I}\right)$ $=H^{n-|I|}\left(V_{I}-V_{I} \cap W, C\right)$. Then there exists an integrable connection form $\omega_{I}=\left(\omega_{I, s}^{r}\right) \in \Omega^{1}(X, * Y) \otimes g l\left(\mu_{I}, C\right)$ such that
(10)

$$
D_{I} P_{I}=d_{X} P_{I}-\omega_{I} \cdot P_{I}=0
$$

According to Proposition 2 we have

$$
\begin{equation*}
d_{X} \int e_{I}^{(r)}-\sum_{s=1}^{\mu_{I}} \omega_{I, s}^{r} \int e_{I}^{s}=\sum_{J \geqslant I, s=1}^{\mu_{r}} A_{(I, J), s}^{r} \int e_{J}^{(s)} \tag{11}
\end{equation*}
$$

with $A_{(I, J), s}^{r}(x, d x) \in \Omega^{1}(X, * Y)$. Therefore by solving the differential equation (11), we arrive at the following

Theorem 1. For any sequence $\phi \subset I_{1} \subset I_{2} \subset \cdots \subset I_{n} \subset\{-n,-n+1$, $\ldots, 0\}$, the integral $\tilde{\eta}$, being a linear combination of $\int e_{\phi}^{(r)}, 1 \leqq r \leqq \mu_{\phi}$, can be described as an element of the $\Omega^{\circ}(X, * Y)$-module generated by the $\mu_{\phi} \cdot \mu_{I_{n}}$ components of the matrix valued iterated integrals of the following type:

$$
\begin{equation*}
P_{\phi}(x) \cdot \int^{x} P_{\phi}^{-1}\left(x_{1}\right) \cdot A_{\phi I_{1}}\left(x_{1}, d x_{1}\right) \cdot P_{I_{1}}\left(x_{1}\right) \cdot \int^{x_{1}} P_{I_{1}}^{-1}\left(x_{2}\right) \cdot A_{I_{1}, I_{2}}\left(x_{2}, d x_{2}\right) \tag{12}
\end{equation*}
$$

$$
\times P_{I_{2}}\left(x_{2}\right) \cdot \int^{x_{2}} \cdots \int^{x_{n-1}} P_{I_{n-1}}^{-1}\left(x_{n}\right) \cdot A_{I_{n-1}, I_{n}}\left(x_{n}, d x_{n}\right) \cdot P_{I_{n}}\left(x_{n}\right) .
$$

According to K. T. Chen's formula (see [4, p. 222]) we have
Corollary. The monodromy $M_{r}, \gamma \in \pi_{1}(X-Y, *)$ preserves each F_{I} : $M_{r} \cdot F_{I} \subset F_{I}$. Using the dual basis $\left\{e_{J, r}^{*}\right\}$ of the above $\left\{e_{J}^{r}\right\}, M_{r}$ can be written in an explicit way:
(13)

$$
M_{r}\left(e_{I, r}^{*}\right)=\sum_{J \supset I, s=1}^{\mu_{J}} M_{(J, I), r}^{s} \cdot e_{J, s}^{*} .
$$

Therefore M_{r} is unipotent if and only if $M_{(J, J)}$ are all the identities.
By taking a suitable finite covering \tilde{X} of X, we may assume that $M_{\left(I_{n}, I_{n}\right)}$ and $M_{(\phi, \phi)}$ are the identities of orders $\operatorname{deg}(V, E)$ and $\operatorname{dim} H^{n}(V$ $-W, C)$, respectively. The fixed part $\operatorname{Hom}_{C}\left(H^{n}(\hat{\Omega}, \hat{d}), C\right)^{\pi_{1}}$ of $\pi_{1}(X$ $-Y, *)$-module $\operatorname{Hom}_{C}\left(H^{n}(\hat{\Omega}, \hat{d}), C\right)$ contains $H_{n}(V-W, C)$ when $V-W$ is affine and contains the ($n, 0)$-part of $H_{n}(V, C)$ when W is empty. When n is equal to 1 , this coincides with the usual periods system of abelian integrals. Under this situation the following questions seem interesting : Do $H_{n}(V-W, C)$ and the ($\left.n, 0\right)$-part of $H_{n}(V, C)$ coincide with $\operatorname{Hom}_{C}\left(H^{n}(\hat{\Omega}, \hat{d}), C\right)^{\pi_{1}}$ when $V-W$ are affine and empty respectively? Does the totality of elements of the matrices $M_{\left(I_{n}, \phi\right)} \in \operatorname{Hom}\left(Z\left[\pi_{1}(\tilde{X}\right.\right.$ $\left.-\tilde{Y}, *), R^{\mu_{\phi} \mu^{I_{n}}}\right)$ generate $\operatorname{Hom}_{C}\left(H^{n}(\hat{\Omega}, \hat{d}), C\right)^{x_{1}}$? It also seems interesting to give any relation between $\operatorname{Hom}_{C}\left(H^{n}(\hat{\Omega}, \hat{d}), C\right)^{\pi_{1}}$ and Griffiths intermediate Jacobian (see [7]).
3. In this section we shall give important examples where M_{r} are all unipotent. From now on we shall assume the Fujita Δ-genus $\Delta(V, E)$ vanishes. Then it is known that (V, E) is isomorphic to a) the complex projective space ($C P^{n}, H$), b) the hyper-quadric (Q^{n}, H), c) the tautological line bundle of an ample vector bundle over the projective line and its base space, or d) $\left(C P^{2}, H^{2}\right)$ where H denotes the hyperplane bundle (see [6]). We shall take as W the union of Cartier divisors $S_{1}, S_{2}, \cdots, S_{m}$ of $|E|$ in general position. Then we have

Proposition 3. There exists a finite covering (\tilde{X}, \tilde{Y}) over (X, Y) branched along Y such that

$$
\begin{equation*}
\nabla_{\tau} \mathcal{O} . F_{I} \subset \sum_{J \supseteqq I} \mathcal{O} . F_{J} \tag{14}
\end{equation*}
$$

for any $\tau \in H^{\circ}(X, \Theta(* Y)) . M_{(J, J)}$ all become the identities.
Actually ∇_{τ} can be explicitely computed (see also [1]).
Definition 2. Consider the space $B^{\circ}\left(\Omega^{\circ}(\tilde{X}, \log \langle\tilde{Y}\rangle)\right)$ spanned by iterated integrals on the path space $\mathcal{P}(\tilde{X}-\hat{Y}, *)$ of $\tilde{X}-\tilde{Y}$:

$$
\begin{equation*}
\int \omega_{i_{1}}, \omega_{i_{2}}, \cdots, \omega_{i_{p}} \tag{15}
\end{equation*}
$$

where $\omega_{j} \in \Omega^{1}(\tilde{X}, \log \langle\tilde{Y}\rangle)$. The elements of B^{0} depending only on homotopy classes in $\mathscr{P}(\tilde{X}-\tilde{Y}, *)$ will be called "hyper-logarithms of p th order" (see [2]).

Then Proposition 2 implies immediately the following

Theorem 2. If $\Delta(V, E)=0$, then the integral $\tilde{\eta}$ can be described as a finite sum of
(rational functions) $\times($ hyper-logarithms of at most n-th order $)$ on \tilde{X} with singularities only on \tilde{Y}.

In view of Lemma 2, Proposition 2 can be proved case by case, by computing suitable bases of the cohomologies $H^{n-|I|}\left(V_{I}-V_{I} \cap W, C\right)$. (It is essential that all $\Delta\left(V_{I}, E_{I}\right)$ vanish for $E_{I}=\left.E\right|_{V_{I}}$.) In fact, by using a technique in [3], we have

Lemma 3. Case a) We put $V^{\prime}=V-S_{m}$ and $W^{\prime}=V^{\prime} \cap W$. Then W^{\prime} is the union of hyperplane sections $S_{j}: f_{j}=0(1 \leqq j \leqq m-1)$ in general position in $V^{\prime}=C^{n}$. As is well known, $H^{n}\left(V^{\prime}-W^{\prime}, C\right)$ has a basis consisting of the logarithmic forms:

$$
d \log f_{i_{1}} \wedge \cdots \wedge d \log f_{i_{n}}
$$

Case b) Let V^{\prime} and W^{\prime} as above. Then W^{\prime} is the union of hyperplane sections $S_{j}: f_{j}=0(1 \leqq j \leqq m-1)$ in the hyperquadric $V^{\prime}: x_{0}^{2}+x_{1}^{2}$ $+\cdots+x_{n}^{2}=1$ in $C^{n+1} . \quad H^{n}\left(V^{\prime}-W^{\prime}, C\right)$ has a basis:

$$
\frac{\theta}{f_{i_{1}} f_{i_{2}} \cdots f_{i_{p}}}, 0 \leqq p \leqq n, \quad \text { and } \quad \frac{\left\{f_{0}, f_{i_{1}}, \cdots, f_{i_{n}}\right\}^{\perp}}{f_{i_{1}} f_{i_{2}} \cdots f_{i_{n}}} \theta, p=n \text {, }
$$

with $1 \leqq i_{1}<\cdots<i_{p} \leqq m-1$ and $\theta=\sum_{j=0}^{n}(-1)^{j} \cdot x_{j} d x_{1} \wedge \cdots \wedge d x_{j-1} \wedge d x_{j+1}$ $\wedge \cdots \wedge d x_{n}$, where $\left\{f_{0}, f_{i_{1}}, \cdots, f_{i_{n}}\right\}^{\perp}$ denotes a non-zero linear function g such that $(g, 1)=\left(g, f_{i_{1}}\right)=\cdots=\left(g, f_{i_{n}}\right)=0$, and (a, b) denotes $\sum_{j=0}^{n+1} \alpha_{j} \beta_{j}$ for $a=\sum_{j=0}^{n} \alpha_{j} x_{j}+\alpha_{n+1}$ and $b=\sum_{j=0}^{n} \beta_{j} x_{j}+\beta_{n+1}$.

Case c) There exists a sequence of positive integers $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ such that V is embedded in $C^{h-1}, h=\mu_{1}+\mu_{2}+\cdots+\mu_{n}+n$, by the mapping

$$
\begin{array}{r}
\boldsymbol{C}^{2} \times \boldsymbol{C}^{n} \rightarrow \boldsymbol{C} \boldsymbol{P}^{h-1} \\
\mathbb{*} \\
\left(w_{0}, w_{1} ; \zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right) \rightarrow\left(u_{j, k}\right)
\end{array}
$$

where $u_{j, k}=w_{0}^{a_{j}-k} \cdot w_{1}^{k} \cdot \zeta_{j}$. Let S_{m+1} be the divisor defined by $w_{0}=\zeta_{1}=0$ in V which is in general position with respect to $S_{1}, S_{2}, \cdots, S_{m}$. Then $V^{\prime}=V-S_{m+1}$ is isomorphic to C^{n} with the coordinates $w_{1} / w_{0}=x_{1}, \zeta_{2} / \zeta_{1}$ $=x_{2}, \cdots, \zeta_{n} / \zeta_{1}=x_{n}$. Let W^{\prime} be the union of hypersurfaces $S_{j}: f_{j}=0$ in $V^{\prime}, 1 \leqq j \leqq m$, where $f_{j}=\sum_{k=2}^{n} \alpha_{j k}\left(x_{1}\right) \cdot x_{k}+\alpha_{j 1}\left(x_{1}\right), \alpha_{j k}\left(x_{1}\right) \in C\left[x_{1}\right] . H^{n}\left(V^{\prime}\right.$ $\left.-W^{\prime}, C\right)$ has a basis

$$
\frac{x_{1}^{\sigma}}{\left[i_{1}, i_{2}, \cdots, i_{n-1}\right]} d x_{1} \wedge d \log f_{i_{1}} \wedge d \log f_{i_{2}} \wedge \cdots \wedge d \log f_{i_{n-1}}
$$

$1 \leqq i_{1}<\cdots<i_{n-1} \leqq m, 0 \leqq \sigma \leqq \operatorname{deg}\left[i_{1}, i_{2}, \cdots, i_{n-1}\right]-1$ and

$$
x_{1}^{\sigma} \cdot \frac{d x_{1} \wedge \cdots \wedge d x_{n}}{f_{i_{1}} \cdots f_{i_{n}}}
$$

$1 \leqq i_{1}<\cdots<i_{n} \leqq m, 0 \leqq \sigma \leqq \operatorname{deg}\left[i_{1}, i_{2}, \cdots, i_{n}\right]-1$, where $\left[i_{1}, i_{2}, \cdots, i_{n-1}\right]$ and $\left[i_{1}, i_{2}, \cdots, i_{n}\right]$ denote the determinants

$$
\left|\begin{array}{c}
\alpha_{i_{1}, 2} \cdots \alpha_{i_{1}, n} \\
\cdots \\
\cdots \\
\alpha_{i_{n-1}, 2} \cdots \alpha_{i_{n-1}, n}
\end{array}\right| \quad \text { and }\left|\begin{array}{c}
\alpha_{i_{1}, 1} \cdots \alpha_{i_{1}, n} \\
\cdots \\
\cdots \\
\alpha_{i_{n}, 1} \cdots \alpha_{i_{n}, n}
\end{array}\right|
$$

respectively.
Case d) Let S_{m+1} be the line at infinity in $\boldsymbol{C} P^{2}$, which is in general position with respect to $S_{1}, S_{2}, \cdots, S_{m}$. Let V^{\prime} be $C P^{2}-S_{m+1}=C^{2}$ Let W^{\prime} be the union of $S_{j}: f_{j}=0$. Then $H^{n}\left(V^{\prime}-W^{\prime}, C\right)$ has a basis

$$
\varphi_{i j}\left(x_{1}, x_{2}\right) \frac{d f_{i} \wedge d f_{j}}{f_{i} f_{j}} \quad \text { and } \frac{d x_{1} \wedge d x_{2}}{f_{i}}
$$

where $\varphi_{i j}\left(x_{1}, x_{2}\right) \in C\left[x_{1}, x_{2}\right]$ mod. the ideal $\left(f_{i}, f_{j}\right)$.
The author would like to express his sincere gratitude to the referee for many useful advices.

References

[1] K. Aomoto: Addition theorem of Abel type for hyper-logarithms. I (preprint).
[2] -: Fonctions hyper-logarithmiques et groupes de monodromie unipotents. J. Fac. Sci. Univ. Tokyo, 25, 149-156 (1978).
[3] -: Les équations aux différences linéaires et les intégrales des fonctions multiformes. Ibid., 22, 271-297 (1975).
[4] K. T. Chen: Iterated integrals of differential forms and loop space homology. Ann. of Math., 97, 217-246 (1973).
[5] J. L. Dupont: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology, 15, 233-245 (1976).
[6] T. Fujita: On the structure of polarized varieties with Δ-genera zero. J. Fac. Sci. Univ. Tokyo, 22, 103-115 (1975).
[7] Ph. Griffiths: Some transcendental methods in the study of algebraic cycles. Lect. Notes in Math., vol. 185, Springer pp. 1-46 (1970).
[8] -: Variations on a Theorem of Abel, Invent. Math., 35, 321-390 (1976).
[9] F. Pham: Introduction à l'étude topologique des singularités de Landau. Gauthiers Villars (1967).
[10] B. Riemann: Vorlesungen über die hyper-geometrische Reihe. Gesammelte Matematische Werke, Nachträge, Dover, pp. 69-94 (1953).

