72. Homotopy Classification of Connected Sums of Sphere Bundles over Spheres. I^{*)}

By Hiroyasu Ishimoto

Department of Mathematics, Faculty of Science, Kanazawa University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

1. Statement of Results. Let A be a p-sphere bundle over a q-sphere (p, q > 1) which admits a cross-section, and consider the following diagram which is commutative up to sign.

Here, $P = [\, , \iota_p]$ means the Whitehead product with the orientation generator ι_p of $\pi_p(S^p)$. We denote the characteristic element of A by $\alpha(A)$. Let $\alpha(A) = i_*\xi$, $\xi \in \pi_{q-1}(SO_p)$. Then, $\{J\xi\} \in J\pi_{q-1}(SO_p)/P\pi_q(S^p)$ does not depend on the choice of ξ . We denote it by $\lambda(A)$ (James-Whitehead [4]).

Let A_i , i=1, 2, ..., r, be *p*-sphere bundles over *q*-spheres which admit cross-sections. It is understood that each A_i also denotes the total space of the bundle and has the differentiable structure induced from those of the fibre and the base space. $\sharp_{i=1}^r A_i$ means the connected sum $A_1 \sharp A_2 \sharp \cdots \sharp A_r$.

As an extension of James-Whitehead [4], we have the following

Theorem 1. Let $A_i, A'_i, i=1, 2, ..., r$, be p-sphere bundles over q-spheres which admit cross-sections, and assume that 2p > q+1, q > 1, $p \neq q$. Then, the connected sums $\sharp_{i=1}^r A_i, \ \sharp_{i=1}^r A'_i$ are of the same homotopy type if and only if there exists a unimodular $(r \times r)$ -matrix L of integer components such that

$$\begin{pmatrix} \lambda(A_1')\\ \vdots\\ \lambda(A_r') \end{pmatrix} = L \begin{pmatrix} \lambda(A_1)\\ \vdots\\ \lambda(A_r) \end{pmatrix},$$

where the abelian group $J_{\pi_{q-1}}(SO_p)/P_{\pi_q}(S^p)$ is considered as a left Z-module.

Furthermore, we have the following

Theorem 2. Even if 2p = q+1, the conclusion of Theorem 1 holds also if p is odd and p, q > 1.

Let p=q. In this case, $\lambda(A_i)$, $\lambda(A'_i)$ belong to $J\pi_{p-1}(SO_p)/P\pi_p(S^p)$

⁽⁾ Dedicated to Professor A. Komatu for his 70th birthday.

Homotopy Classification of Connected Sums

$$\cong J\pi_{p-1}(SO) \cong Z/mZ. \quad \text{Here,} \\ m = \begin{cases} 1 & \text{if } p = 3, 5, 6, 7 \pmod{8}, \\ 2 & \text{if } p = 1, 2 \pmod{8}, \\ m(2s) & \text{if } p = 0, 4 \pmod{8}, \text{ i.e. } p = 4s \ (s > 0), \end{cases}$$

where m(2s) is the denominator of $B_i/4s$ (Adams [1]). Represent $\lambda(A_i)$, $\lambda(A'_i)$ by the integers λ_i , λ'_i respectively such that $0 \le \lambda_i$, $\lambda'_i \le m-1$.

Theorem 3. Let $A_i, A'_i, i=1, 2, ..., r(r>1)$, be p-sphere bundles over p-spheres $(p>2, p\neq 4, 8)$. Then, the connected sums $\sharp_{i=1}^r A_i, \sharp_{i=1}^r A'_i$ are of the same homotopy type if and only if G.C.D. $(\lambda_1, ..., \lambda_r, m)$ $= G.C.D. (\lambda'_1, ..., \lambda'_r, m)$. Especially, if $p=1, 2 \pmod{8}$, then m=2 and therefore, the connected sums are of the same homotopy type if and only if they have simultaneously non-trivial bundles or only trivial bundles.

The following is equivalent to Theorem 3 for r>1, but remains valid also for r=1. This gives an analogue of Theorem 1 in the case p=q (p>2).

Theorem 3'. Let $A_i, A'_i, i=1, 2, \dots, r$, be p-sphere bundles over p-spheres ($p>2, p\neq 4, 8$). Then, the connected sums $\sharp_{i=1}^r A_i, \sharp_{i=1}^r A'_i$ are of the same homotopy type if and only if there exists a unimodular ($r \times r$)-matrix L of integer components such that

$$\binom{\lambda(A_1')}{\vdots}_{\lambda(A_r')} = L\binom{\lambda(A_1)}{\vdots}_{\lambda(A_r)}.$$

Remark. If $p=3, 5, 6, 7 \pmod{8}$, the theorems hold trivially, since $\pi_{p-1}(SO_{p+1})=0$.

Remark. Even if p=4, 8, the theorems hold if all $\alpha(A_i)$, $\alpha(A'_i)$ are even, that is, $\sharp_{i=1}^r A_i$, $\sharp_{i=1}^r A'_i$ are of type II (Milnor [5]).

2. Sketch of the proofs. The detailed proofs of the above theorems will appear elsewhere. We give here only an outline.

 $\begin{array}{l} \sharp_{i=1}^{r}A_{i} \text{ has the cell structure } \{ \bigvee_{i=1}^{r}(S_{i}^{p} \lor S_{i}^{q}) \} \bigcup_{\varphi} D^{p+q} \text{ and } \varphi \text{ is given} \\ \text{by } \{\varphi\} = \sum_{i=1}^{r}(\iota_{p}^{i} \circ \eta_{i} + [\iota_{q}^{i}, \iota_{p}^{i}]), \text{ where } \iota_{p}^{i}, \iota_{q}^{i} \text{ are the orientation generators} \\ \text{of } \pi_{p}(S_{i}^{p}), \pi_{q}(S_{i}^{q}) \text{ respectively, } \eta_{i} = J\xi_{i}, \text{ and } i_{*}\xi_{i} = \alpha(A_{i}). \quad S_{i}^{p}, S_{i}^{q} \text{ correspond} \\ \text{respectively to the fibre of } A_{i} \text{ and the cross-section determined by } \xi_{i}. \\ \text{Let } \overline{A}_{i} \text{ be the associated } (p+1)\text{-disk bundle of } A_{i}. \quad \text{Then, the boundary connected sum } W = \natural_{i=1}^{r} \overline{A}_{i} \text{ is considered as a handlebody and } \partial W \\ = \sharp_{i=1}^{r} A_{i}. \quad \text{Using handlebody theory of Wall [7], we see that for any \\ \text{basis of } H_{q}(\partial W) \cong H_{q}(W) \ (p \neq q), \text{ there is a representation } \partial W = \sharp_{i=1}^{r} \tilde{A}_{i} \\ \text{by } p\text{-sphere bundles over } q\text{-spheres admitting cross-sections. Thus,} \\ \text{for a given homotopy equivalence } f: \partial W = \sharp_{i=1}^{r} A_{i} \land \psi_{i}^{r} = \Lambda_{i}^{r'} \\ \text{where } j_{*}^{r}: \pi_{q}(\bigvee_{i=1}^{r} (S_{i}^{r} \Vdash S_{i}^{r'})) \rightarrow \pi_{q}(\bigvee_{i=1}^{r} (S_{i}^{r} \lor S_{i}^{r'}), \bigvee_{i=1}^{r} S_{i}^{r'}) \\ \text{and } j_{*}^{r'} \text{ is the inclusion map.} \\ \text{Then, comparing the attaching maps of the } (p+q)\text{-cells} \\ \end{array}$

No. 8]

using Hilton [3] and Barcus-Barratt [2], we see that $\lambda(\tilde{A}_i) = \lambda(A'_i)$, $i=1,2,\dots,r$. Since we have transformed the basis of $H_q(\partial W)$ $\cong H_q(W), (\lambda(\tilde{A}_i)) = L(\lambda(A_i))$ for some unimodular matrix L. The converse is similar. Hence, we have Theorem 1. Theorem 2 is obtained by comparing more precisely the attaching maps of the (p+q)-cells.

Let p=q (p>2), and let $\nu: H=H_p(\sharp_{i=1}^r A_i) \to \pi_{p-1}(SO_p)$ be the map assigning to each $x \in H$ the characteristic element of the normal bundle of the imbedded *p*-sphere which represents *x*. Let $\mu=J \circ \nu$. Similarly, H', μ' are defined for $\sharp_{i=1}^r A'_i$. H, H' have symplectic bases and after certain calculations we see that $(\lambda(A_i)) = L(\lambda(A'_i))$ for some unimodular matrix *L* if and only if μ, μ' have the same values on some symplectic bases of *H*, *H'*. Then, by Lemma 8 of Wall [6], we have Theorem 3.

References

- [1] Adams, J. F.: On the groups J(X)-IV. Topology, 5, 21-71 (1966).
- [2] Barcus, W. D., and M. G. Barratt: On the homotopy classification of the extensions of a fixed map. Trans. Amer. Math. Soc., 88, 57-74 (1958).
- [3] Hilton, P. J.: On the homotopy groups of the union of spheres. J. London Math. Soc., 30, 154-172 (1955).
- [4] James, I. M., and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres. I. Proc. London Math. Soc., 4(3), 196-218 (1954).
- [5] Milnor, J. W.: On simply connected 4-manifolds. Symp. Intern. de Topologia Algebrica, Mexico, pp. 122-128 (1958).
- [6] Wall, C. T. C.: Classification of (n-1)-connected 2n-manifolds. Ann. of Math., 75, 163-189 (1962).
- [7] ——: Classification problems in differential topology-I, Classification of handlebodies. Topology, 2, 253-261 (1963).