67. A Generalization of a Theorem of Marotto^{*)}

By Kenichi SHIRAIWA**) and Masahiro KURATA***)

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1979)

In 1975, Li and Yorke found the following theorem [3]. Let $f: I \to I$ be a continuous map of the compact interval I into itself. If f has a periodic point of minimal period three, then f exhibits chaotic behavior. This result is generalized by F. R. Marotto [4] in 1978 for the multi-dimensional case as follows. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map of the *n*-dimensional Euclidean space \mathbb{R}^n $(n \ge 1)$ into itself. If f has a snap-back repeller, then f exhibits chaotic behavior.

In this paper, we shall announce a generalization of the above theorem of Marotto. Our theorem can also be regarded as a generalization of the Smale's result [6] on the transversal homoclinic point of a diffeomorphism. A detailed proof will appear later.

§1. The main theorem. Let M be a smooth manifold of dimension n. Let $f: M \to M$ be a C^1 -map, and let $z_0 \in M$ be a hyperbolic fixed point of f. We denote by $W^u_{\text{loc}}(z_0)$ (resp. $W^s_{\text{loc}}(z_0)$) a local unstable (resp. stable) manifold of f at z_0 .

Main Theorem. Let $f: M \to M$ be a C^1 -map. Let $z_0 \in M$ be a hyperbolic fixed point of f. Assume the following three conditions.

(1) $u = \dim W^u_{\text{loc}}(z_0) > 0.$

(2) There exist a point $z_1 \in W^u_{loc}(z_0)$ $(z_1 \neq z_0)$ and a positive integer m such that $f^m(z_1) \in W^s_{loc}(z_0)$.

(3) There exists a u-dimensional disk B^u embedded in $W^u_{\text{loc}}(z_0)$ such that B^u is a neighborhood of z_1 in $W^u_{\text{loc}}(z_0)$, $f^m | B^u : B^u \to M$ is an embedding, and $f^m(B^u)$ intersects $W^s_{\text{loc}}(z_0)$ transversally at $f^m(z_1)$.

Then the following conclusions hold.

(a) There is a positive integer N such that there is a periodic point of f of minimal period p for any integer $p \ge N$.

(b) There is an uncountable set S (called a scrambled set) in M satisfying the following conditions.

(i) S does not contain any periodic points.

(ii) $f(S) \subset S$

(iii) $\limsup_{k\to\infty} d(f^k(x), f^k(y)) > 0$ for any $x, y \in S$ $(x \neq y)$, where d is a compatible metric on M.

^{*)} Dedicated to Professor A. Komatu on his 70th birthday.

^{**)} Department of Mathematics, College of General Education, Nagoya University.

^{***)} Department of Mathematics, Nagoya Institute of Technology.

No. 8]

(iv) $\limsup d(f^k(x), f^k(y)) > 0$ for any $x \in S$ and a periodic point y.

(v) There exists an uncountable subset S_0 of S such that $\liminf d(f^k(x), f^k(y)) = 0$ for $x, y \in S_0$.

Remark 1. The above theorem holds if $f: M \to M$ is of class C^1 on a neighborhood of z_0 and on a neighborhood of the orbit of z_1 .

Remark 2. In the above theorem the tangent map $T_{z_1}f^m$ of f^m at $z_1 \in M$ may be degenerate.

Remark 3. In case $u = \dim M$, $f^m(z_1) = z_0$ and the above theorem reduces to the theorem of Marotto.

Remark 4. If f is a diffeomorphism with $f^m(z_1) \neq z_0$, then the above assumption implies that $f^m(z_1)$ is a transversal homoclinic point. Thus, our theorem generalizes Smale's result [6] in some sense.

Remark 5. Transversality condition (3) of the main theorem is necessary for the existence of the scrambled set.

§ 2. Sketch of a proof. We denote by T(N) the tangent space of a manifold N. The tangent map of a C^1 -map $f: N_1 \rightarrow N_2$ is denoted by $Tf: T(N_1) \rightarrow T(N_2)$.

Let $s = \dim W_{\text{loc}}^s(z_0) = n - u$. Denote by $E^s(r)$ (resp. $E^u(r)$) the sdimensional (resp. u-dimensional) disk with center at the origin and radius r > 0. By the stable manifold theorem, we can identify a neighborhood of z_0 with $E^s(r_1) \times E^u(r_1)$ $(r_1>0)$ such that $E^s(r_1)$ (resp. $E^u(r_1)$) is identified with $W_{\text{loc}}^s(z_0)$ (resp. $W_{\text{loc}}^u(z_0)$). Let $\pi^{\sigma}: E^s(r_1) \times E^u(r_1)$ $\rightarrow E^{\sigma}(r_1)$ ($\sigma = s$ or u) be a canonical projection. Since $T(E^s(r_1) \times E^u(r_1))$ $= T(E^s(r_1)) \times T(E^u(r_1)), v \in T(E^s(r_1) \times E^u(r_1))$ can be expressed uniquely as $v = (v^s, v^u), v^{\sigma} \in T(E^{\sigma}(r_1))$.

Let r be any positive number smaller than r_1 .

Main Lemma. Assume the same conditions of the main theorem. Let B^u be a u-dimensional disk in $E^u(r_1)$, and let B^s be an arbitrary s-dimensional disk with the origin 0. If $\psi: B^s \times B^u \to E^s(r_1) \times E^u(r_1)$ is an embedding such that $\psi|0 \times B^u$ is the inclusion map $B^u \subset E^u(r_1)$, then for any $\varepsilon > 0$ and L > 0 there is a positive integer $N(\psi, \varepsilon, L)$ satisfying the following condition.

For any integer $n \ge N(\psi, \varepsilon, L)$, there is an embedding $\phi = \phi(\psi, \varepsilon, L, n)$: $E^{s}(r) \times B^{u} \rightarrow E^{s}(r_{1}) \times E^{u}(r_{1})$ satisfying the following eight conditions.

(1) $\phi(E^s(r) \times y) \subset \psi(B^s \times y) \text{ for } y \in B^u.$

(2) $f^{-n}(\phi(E^s(r)\times B^u))\subset E^s(r)\times E^u(r).$

(3) $f^{-n}(\phi(\partial E^s(r) \times B^u)) \subset \partial E^s(r) \times E^u(r)$, where $\partial E^s(r)$ is the boundary of $E^s(r)$.

(4) $\pi^s f^{-n} \phi(x \times B^u) = x \text{ for } x \in E^s(r).$

(5) $||v^u|| < \varepsilon ||v^s||$ for any non-zero v in $T(f^{-n}\phi(E^s(r) \times y)), y \in B^u$.

(6) $||(Tf^{-n}(v))^{s}|| > L ||v^{s}||$ for any non-zero v in $T(\phi(E^{s}(r) \times y)), y \in B^{u}$.

if i=0

(7) $||(Tf^{n}(v))^{s}|| < \varepsilon ||(Tf^{n}(v))^{u}||$ and

(8) $||(Tf^{n}(v))^{u}|| > L ||v^{u}||$ for any non-zero $v \in T(f^{-n}\phi(x \times B^{u})), x \in E^{s}(r).$

This lemma is proved by a similar argument as in the proof of λ -lemma of Palis [5].

Using the above lemma, we can prove the following

Lemma. Under the assumption of the main theorem, there is a positive integer N_1 satisfying the following conditions.

For any integer $N_0 \ge N_1$, there are two embeddings

 $\phi_i: (E^s(r) \times E^u(r_1), E^s(r) \times B^u_i) \to E^s(r_1) \times E^u(r_1), \qquad (i=0,1)$

of a pair of rectangles, where B_i^u is a u-dimensional disk contained in the interior of $E^u(r_1)$, satisfying the following ten conditions.

(1) $f^{N_i}(\phi_i(E^s(r) \times B^u_i)) \subset \phi_j(E^s(r) \times E^u(r_i))$ (i, j=0, 1).

(2) $f^{N_i}(\phi_i(E^s(r) \times \partial B^u_i)) \subset \phi_j(E^s(r) \times (E^u(r_1) - B^u_j))$ (i, j = 0, 1), where ∂B^u_i is the boundary of B^u_i in $E^u(r_1)$.

(3) $f_*^{N_i}: H_{u-1}(\phi_i(E^s(r) \times \partial B_i^u)) \to H_{u-1}(\phi_j(E^s(r) \times (E^u(r_1) - B_j^u)))$ is an isomorphism, where $H_{u-1}($) is the (u-1)-th homology group and $f_*^{N_i}$ is the induced homomorphism of f^{N_i} (i, j=0, 1).

(4) $\pi^{s}\phi_{i}(x \times B_{i}^{u})$ consists of a single point for $x \in E^{s}(r)$, and $\pi^{s}\phi_{i}(E^{s}(r) \times B_{i}^{u}) = E^{s}(r)$, (i=0, 1).

(5) $\pi^{u} f^{N_{i}} \phi_{i}(E^{s}(r) \times y)$ consists of a single point for $y \in B_{i}^{u}$ (i=0,1).

(6) $2 ||v^{s}|| < ||v^{u}||$ for any non-zero v in $T(f^{N_{i}}\phi_{i}(x \times B_{i}^{u})), x \in E^{s}(r)$ (i=0, 1).

(7) $2 ||v^u|| < ||v^s||$ for any non-zero v in $T |\phi_i(E^s(r) \times y), y \in B_i^u$ (*i*=0, 1).

(8) $||(Tf^{N_i}(v))^u|| > 8 ||v^u||$ for any non-zero v in $T(\phi_i(x \times B_i^u))$, $x \in E^s(r)$ (i=0, 1).

(9) $8 ||(Tf^{N_i}(v))^s|| < ||v^s||$ for any non-zero v in $T(\phi_i(E^s(r) \times y)), y \in B_i^u$ (i=0, 1).

(10) $\phi_0(E^s(r) \times B_0^u) \cap \phi_1(E^s(r) \times B_1^u) = \phi.$

Now, define $A_i = \phi_i$ ($E^s(r) \times B_i^u$), i=0, 1. Let $\Sigma = \{A_0, A_1\}^Z$ be a twosided shift on two symbols A_0 and A_1 , and let $\sigma: \Sigma \to \Sigma$ be the shift map.

An element of Σ is a bisequence $\underline{a} = (a_i)_{i \in \mathbb{Z}}$ such that $a_i = A_0$ or A_i . For $\underline{a} = (a_i)_{i \in \mathbb{Z}} \in \Sigma$, define $k(\underline{a}, i) = N_0$ if $a_i = A_0$ and $k(\underline{a}, i) = N_1$ if $a_i = A_1$. Define a subset $F^{-i}(\underline{a})$ of M as follows.

$$((f|a_0)^{-k(\underline{a},0)} \circ \cdots \circ (f|a_{i-1})^{-k(\underline{a},i-1)}(a_i)$$
 if $i > 0$

$$F^{-i}(\underline{a}) = \Big\{ a_0 \Big\}$$

 $\int f^{k(\underline{a},-1)}(\cdots f^{k(\underline{a},i+1)}(f^{k(\underline{a},i)}(a_i)\cap a_{i+1})\cap\cdots)\cap a_{-1})\cap a_0 \quad \text{if } i < 0,$

Proposition. (a) $\bigcap_{i \in \mathbb{Z}} F^{-i}(\underline{a})$ consists of a single point of M for each $\underline{a} \in \Sigma$.

(b) A map $p: \Sigma \to M$ defined by $p(\underline{a}) = \bigcap_{a} F^{-i}(\underline{a})$ is continuous.

(c) If there exists an integer $i \ge 0$ such that $a_i \neq b_i$ for $\underline{a} = (a_i)_{i \in \mathbb{Z}}$,

 $\underline{b} = (b_i)_{i \in \mathbb{Z}}$, then $p(\underline{a}) \neq p(\underline{b})$.

(d) If $N_0 = N_1$, then $p \circ \sigma = f^{N_0} \circ p$.

Now consider the case $N_0 = N_1$. Then $p: \Sigma \rightarrow M$ satisfies the following conditions.

(2.1) $p: \Sigma \to M$ is continuous, and $p(\underline{a}) \neq p(\underline{b})$ if $a_i \neq b_i$ for some $i \geq 0$.

(2.2) $f^{N_0} \circ p = p \circ \sigma$.

(2.3) $A_0 \cap A_1 = \phi$.

Now, we can prove the conclusion (b) of Main Theorem using (2.1), (2.2), and (2.3). Our proof is similar to the one in Li and Yorke [3] and Marotto [4].

References

- P. Hartman: Ordinary Differential Equations. John Wiley and Sons, Inc., p. 245, Lemma 8.1. (1964).
- [2] M. Kurata: Hartman's theorem for hyperbolic set. Nagoya Math. J., 67, 41-52 (1977).
- [3] T. Y. Li and J. A. Yorke: Period three implies chaos. Amer. Math. Monthly, 82, 985-992 (1975).
- [4] F. R. Marotto: Snap-back repellers imply chaos in Rⁿ. J. Math. Anal. Appl., 63, 199-223 (1978).
- [5] J. Palis: On Morse-Smale dynamical systems. Topology, 8, 384-404 (1969).
- [6] S. Smale: Diffeomorphisms with many periodic points. Differential and Combinatorial Topology. Princeton University Press, pp. 63-80 (1968).