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On a Nature of Convergence of Some
Feynman Path Integrals. II
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Department of Mathematics, University of Tokyo

(Communicated by K.Ssaku YOSIDA, M. ff.A., Oct. 12, 1979)

1. Introduction. In the previous note [8], we reported that
under the assumptions (V-I) and (V-II) below, the Feynman path
integral with the Lagrangean

1L(t, x, )=--12 V(t, x)

converges in a very strong topology if the time interval is short. In
the present note, we shall discuss the convergence of the Feynman
path integral in the case the time interval is longer.

The potential function V(t, x) is assumed to satisfy the following
two assumptions

(V-I) V(t, x)is a real valued function of (t, x). For any fixed
t e R, V(t, x) is of class C in x. V(t, x) is a measurable function of
(t,x)e RRn.

(V-II) For any multi-index with its length [al>_2, the measur-
able function M,(t) defined by

M.(t)=sup (--V(,, x)+ sup IV(’,
xRn \ (X / Ixl <1

is essentially bounded on any compact set of R.
We fix a large positive number K, say, K= 100(n+ 100). We let

T= if ess. sup M.(t)<c. Otherwise, we let T be any fixed
tR 2glal_<K

finite positive number. We shall discuss everything in the time inter-
val (-- T, T).

Let S(t, s, x, y) be the classical action along the classical orbit
starting from y at time s and reaching x at time t. We can prove
that there exists a positive constant 3(T) such that S(t, s, x, y)is uniquely
defined for any x and y e R if lt-sl<_,(T). See, [6], [7], and [8].
For N=0, 1,2, ..., we shall consider the following integral trans-
formation,

( -- )/ a()(, t, s, x, y)e..,)(y)dy,( 1 ) E()(, t, s)(x)=
2=(t--s)

where -/-1]t-, it being a small positive parameter (the Planck’s
constant), and the amplitude unction is defined by (3) and (11) of [8].
Note that E()(, t, s)is the integral transformation that was used by
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Feynman [4] and [5]. See also Chazarain [2] and Kitada [9].
Let [s, t] be an arbitrary subinterval of (-T, T) and let

be an arbitrary subdivision o [s, t]. We denote
(3) 3(/)-- max Is-s_].

IjKL

Following Feynman, we consider the iterated operator E()(z/l, t,s)
associated with the subdivision z/;
(4) E()(zl[,,t,s)=E)(,,t,s_)E)(,,s_,s_O. .E)(,,s,s).
Its kernel function is
(5) I()(AI, , s, x, y)

;< l-[ a)(2, s, s_, x, x-)
Rn Rn

L L-1

exp S(s, s_, x, x-) dx,
j=l

where x=y and x=x. We shall prove that the limit

()0

exists and equals to the kernel function of the fundamental solution
or the SchrSdinger equation

( ( )( 7 ) u(t,.x)- 2- + V(t, x) u(t, x)=0,

u(s, x) =(x),
i we urther assume additional conditions (0-I)-(0-III)which will be
stated in 2. These conditions roughly mean that the terminal point
(t, x) is not conjugate to the initial point (s, y) in the space time along
any of classical orbits joining these points.

2. Additional assumptions and main results. I ]t-s]3(T),
we can write as

( 8 ) I()(A], t, s, x, y)=
2u(t--s)

(A[, t, s, x,

with some amplitude function a()(A, t,s,x, y) which is an element
a()(A, t, s) of (RR) as a function o (x, y) with parameters
A, , t and s. We proved in [8] that
( 9 ) lira a()(A , t, s, x, y)= k(, t, s, x, y)

()0

exists in the unction space (RR) if t--sg3(T). (See Theorems
1 and 2 o [8]). Let

(10) K(, t, s, x, y)=
2u(t--s)

k(], t, s, x,

and define the operator

(11) U(], t, s)(x)= K(, t, s, x, y)(y)dy.
JRn
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Then, this is the fundamental solution for the SchrSdinger equation
(7).

We wish to treat the case that [t-sl is larger. Let [s, t](--T, T)
be an arbitrary time interval. Let
(12) i S---- t < t <" < tL t
be any fixed subdivision such that
(13) 3(z/1) max

IjL

Then, by the evolution property of U(2, , s), we define the fundamental
solution U(2, , s) by
(14) U(2, t, s)= U(2, t, $_) U(2, t_, $_). U(2, t, s).
Let
(15) / t s,0<s,<. <s,=t
be an arbitrary subdivision of [t, t+]. As a result of Theorems 1
and 2 of [8], we have

Theorem 1. For non-negative integer m, there exists a positive
constant Co(m, T) such that

(6)
<_Co(m, T)(z/i)+’ [[- [t+l--til exp Co(m, T)

In order to obtain more detailed description, we require further
knowledge about geometry of the classical orbits. We shall treat the
simplest case. We assume the following conditions;

(0-I) There are g different classical orbits 7,, 72, "", 7 starting

from Yo at time s and reaching Xo at time t.
(0-II) Xo is not conjugate to Yo along any of these classical orbits.

It is well known that if these two conditions hold then they also hold
for any pair (x, y) of points in some neighbourhood of (x0, Y0) e R R.
(See [11].)

To state the third assumption (0-III), we need notations" We fix
the subdivision z, as (12). Take any sequence of points y--- x, x

Xx x in R. Let us denote by ’-’ the classical orbit joining (_,,
to ($, x) in the space time R X R. If we connect all these, we obtain
a broken classical orbit 7(x,x’-’, .,x, y) joining (,x) to (s, y) in
R X R. We shall denote by ]-’ and the initial and the terminal,
respectively, momenta o the classical orbit ,-’. If the broken orbit

7(x,x-’,...,x’,y) differs rom any of the smooth classical orbits

7,,, ",7, then the momentum along the broken orbit 7(x,x-,
., x, y) is discontinuous at some o the points. (t, x), ]-- 1, 2, ., L- 1,

that is, =/=] or some ]=1,2, ...,L--1. We require a little stronger
property

(0-III) Let=--. Then, lim ---11=c as -Ix
And there exist positive constants ,, and , such that
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(17)

(0-III).

det ("" "5-) -
Theorem 2. In addition to (V-I) and (V-II), we assume (0-I)-

Then, the kernel function K(2, t, s, x, y) of U(2, t, s) is of the

K(, t, s, x, y)=
2(t--s)(18)

X k(2, t, s, x, y) exp (- _z i Ind 7+ 2S(t, s, x, y)}
where S(t, s, x, y) is the classical action along the classical orbit and
Ind V is the Morse-Keller-Maslov index of the orbit . The function
k(2, t, s, x, y) is a smooth function in some neighbourhood of (t, s, Xo, Yo).

By the same reason, we can prove that the kernel function
I()(d], t, s, x, y) of E()(d, t, s) has the form

I(AI2, t, , , )=
2

where we put A=AU AU... U A, he refinemen of A of (12). We
wish to discuss he limi of I(AI2, t, , , ) as 8(A)O.

Theorem 3. I aggitio to (V-I) ag (V-II), we me (O-I)
-(O-III). The, o mall eihbohoog
there exists a ositie constant C such that
(20) [k(2, t,s,x,y)--bZ)(dl2, t,s,x,y)[C]2]- (d)+

holds for any (x, y)e F and for ]=1, 2, 3,..., g. The constant C is
independent of subdivision and of if [[ is bounded away from O.

This enables us to discuss the behaviour
(the quasi-classical limit). Following Yajima’s calculation in [12],

we have
Theorem 4. Assume (0-I)-(0-III) as well as (V-I) and (V-II).

Then, we have the estimate

(1)/k(,t,s,x y)- dyAd(21)
t s dy

where dyAd is the canonical 2n form in the phase space RXR and
dyA dx((t)) denotes the volume element of the space RR which is
the direct product of the initial and the terminal configuration space
along the orbit , ]= 1, 2, 3,..., g.

3. Sketch of the proof of Theorem 2. We have
(22) K(2, t, s, x, y)
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L L-I

I-[ k(,, t, t_, x, x-) exp ,S(t, t_, x, x-9 [I dx.
R R j=l jl

We can apply the stationary phase method to this integral (22)and
obtain Theorem 2 (see Fedoryuk [3] or Asada-Fujiwara [1]), since
(0-I)-(0-III) hold.
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