61. On Some Periodic 4. Transitive Permutation Groups

By Mitsuo Yoshizawa

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1979)

1. Introduction. In [2], O. H. Kegel determined the locally finite Zassenhaus groups with some additional conditions. By making use of some ideas in the proofs of M. Hall [1] and V. P. Shunkov [4], we shall prove the following theorem allied to Kegel's result.

Theorem. Let G be a periodic 4-transitive permutation group on a set Ω ($|\Omega| \leq \infty$). If $G_{\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5} = 1$ for any distinct five points $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ of Ω , then G is a finite group and is isomorphic to one of the following groups: $S_4, S_5, S_6, A_6, A_7, M_{11}$ or M_{12} .

Definitions. Let G be a group. G is called a periodic group if every element of G has finite order. G is called a locally finite group if every finite subset of G generates a finite group. G is called a Frobenius group if G contains a proper subgroup H such that $g^{-1}Hg \cap H$ =1 for all $g \in G-H$. Such a subgroup H of the Frobenius group G is called a Frobenius complement of G.

The author thanks Prof. H. Enomoto for helpful remarks and corrections.

2. Proof of Theorem. In the first place, we prove the following Lemma. Let G be a periodic Frobenius group and H a Frobenius complement of G. Then H contains at most one involution.

Proof. Suppose, by way of contradiction, that H contains two involutions i and j. Let g be an involution in G-H. First we show that there exists an involution y in G-H such that $y^{-1}iy=g$. If |ig|(=the order of ig) is even, then we have ia=ai and ga=ag for the involution a in $\langle ig \rangle$. Therefore we have $a \in C_G(i) \subseteq H$, and so we have $g \in C_G(a) \subseteq H$, a contradiction. Hence there exists an element x in $\langle ig \rangle$ such that $x^{-1}ix=g$, because |ig| is odd. Set ix=y. Then y is an involution in G-H such that $y^{-1}iy=g$. Similarly, there exists an involution z in G-H such that $z^{-1}jz=g$. Since yz normalizes H and $y^{-1}Hy$ $(=z^{-1}Hz)$, we have yz=1. Hence we have i=j, a contradiction.

Proof of Theorem. Let G be a permutation group satisfying the assumption of Theorem. If G is a finite group, then we know that G is isomorphic to S_4 , S_5 , S_6 , A_6 , A_7 , M_{11} or M_{12} (cf. [1], [3]). From now on, we shall assume that G is an infinite periodic group and $|\Omega| = \infty$, and prove eventually that this leads to a contradiction. We may assume that $\{1, 2, 3, \dots\} \subseteq \Omega$.

First suppose that the stabilizer of four points in G contains no involution. Since G is 4-transitive on Ω , there exist involutions a and b such that

 $a = (1)(2)(3 \ 4) \cdots, \qquad b = (1 \ 2)(3)(4) \cdots.$

Set |ab|=2s. Then s is odd, because $(ab)^2 \in G_{1234}$. Set $c=(ab)^s$. Then c is an involution with ac=ca. Since G is 4-transitive on Ω , G contains an element g such that $a^g=(1\ 2)(3\ 4)\cdots$. Then $a^gc=(1)(2)(3)(4)\cdots$. Hence a^g is conjugate to c, because $|a^gc|$ is odd. Thus c is conjugate to a, and |F(c)| (=the number of the points left fixed by c) is two or three. Suppose that |F(c)|=3. We may assume that

 $c = (1 \ 2)(3 \ 4)(5)(6)(7) \cdots$, and $a = (1)(2)(3 \ 4)(5 \ 6)(7) \cdots$.

We remark that $\langle a, c \rangle$ is semiregular on $\Omega - \{1, 2, 3, 4, 5, 6, 7\}$. Let $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be any orbit of $\langle a, c \rangle$ of length four. We may assume that $a = (1)(2)(3 \ 4)(5 \ 6)(7)(\alpha_1 \ \alpha_2)(\alpha_3 \ \alpha_4) \cdots$,

 $c = (1 \ 2)(3 \ 4)(5)(6)(7)(\alpha_1 \ \alpha_2)(\alpha_3 \ \alpha_4) \cdots$

Since G is 4-transitive on Ω , G contains an element d of order four such that $d = (\alpha_1 \alpha_2 \alpha_3 \alpha_4) \cdots$. Then, d^2 is an involution and $d^2c = (\alpha_1)(\alpha_2)(\alpha_3)(\alpha_4)$ \cdots . Hence d^2 is conjugate to c, and there exists an element h in $G_{\alpha_1 \alpha_2 \alpha_3 \alpha_4}$ such that $c = (d^2)^h = (d^h)^2$. Let us replace d^h with d. Then $d^2 = c$, $d = (\alpha_1 \alpha_2 \alpha_3 \alpha_4) \cdots$, and d fixes $\{5, 6, 7\}$ as a set. If $d^{(5,6,7)}$ is a transposition then $(ad)^3 = (\alpha_1 \alpha_3)(\alpha_2)(\alpha_4)(5)(6)(7)\cdots$. Therefore $G_{\alpha_2 \alpha_4 56}$ contains an involution, a contradiction. Thus, we have

$$d = (\alpha_1 \alpha_2 \alpha_3 \alpha_4)(5)(6)(7) \cdots$$

Since $dd^a \in G_{a_1a_2a_3a_456}=1$, we get $d^a=d^{-1}$. Hence $\langle a, d \rangle$ is a dihedral group of order eight. Since d normalizes $\langle a, c \rangle$, and $\{1, 2\}, \{3, 4\}$ and $\{5, 6\}$ are the orbits of $\langle a, c \rangle$ of length two, we have

 $d = (\alpha_1 \alpha_2 \alpha_3 \alpha_4)(1 \ 3 \ 2 \ 4)(5)(6)(7) \cdots$

or

$$d = (\alpha_1 \alpha_2 \alpha_3 \alpha_4)(1 \ 4 \ 2 \ 3)(5)(6)(7) \cdots$$

Hence,

 $ad = (1 \ 3)(2 \ 4)(\alpha_1 \ \alpha_3)(\alpha_2)(\alpha_4)(5 \ 6)(7) \cdots$

or

 $ad = (1 \ 4)(2 \ 3)(\alpha_1 \ \alpha_3)(\alpha_2)(\alpha_4)(5 \ 6)(7) \cdots$

Thus, we have the following result: For any orbit $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ of $\langle a, c \rangle$ of length four, there exists an involution x in G such that $x^{\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}}$ is a transposition and $x = (1 \ 3)(2 \ 4)(5 \ 6)(7) \cdots$ or $(1 \ 4)(2 \ 3)(5 \ 6)$ (7)... Since $\langle a, c \rangle$ has infinite number of orbits of length four and any involution fixes at most three points, we get infinite number of involutions of the form $(1 \ 3)(2 \ 4)(5 \ 6)(7) \cdots$ or $(1 \ 4)(2 \ 3)(5 \ 6)(7) \cdots$. Hence we have $|G_{1234567}| = \infty$, a contradiction.

If |F(c)|=2, then we get a contradiction by the similar argument to the case |F(c)|=3.

Thus, the stabilizer of four points in G contains an involution. Since G_{1234} is a Frobenius complement of the Frobenius group G_{123} , G_{1234} contains the unique involution by Lemma. Let i be the involution of G_{1234} . We may assume that

$$i = (1)(2)(3)(4)(5 \ 6) \cdots$$

Let $(\alpha \ \beta)$ be any transposition of *i* different from (5 6). Then *i* normalizes $G_{56\alpha\beta}$, and *i* centralizes the unique involution *x* of $G_{56\alpha\beta}$, where $x = (1\ 2)(3\ 4)(5)(6)\cdots$, $(1\ 3)(2\ 4)(5)(6)\cdots$ or $(1\ 4)(2\ 3)(5)(6)\cdots$. Since *i* has infinite number of transpositions and any involution fixes at most four points, we get infinite number of involutions of the form $(1\ 2)(3\ 4)$ $(5)(6)\cdots$, $(1\ 3)(2\ 4)(5)(6)\cdots$ or $(1\ 4)(2\ 3)(5)(6)\cdots$. Hence we have $|G_{123456}| = \infty$, a contradiction.

References

- [1] M. Hall, Jr.: On a theorem of Jordan. Pacific J. Math., 4, 219-226 (1954).
- [2] O. H. Kegel: Zur Struktur lokal endlicher Zassenhausgruppen. Arch. Math., 18, 337-348 (1967).
- [3] H. Nagao: On multiply transitive groups. V. J. Algebra, 9, 240–248 (1968).
- [4] V. P. Shunkov: A generalization of Frobenius' theorem to periodic groups. Alg. i Logika, 6, 113-124 (1967) (in Russian).