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60. A Generalization of Cauchy-Riemann Equations on
a Riemannian Symmetric Space and the
H* Space Theory

By Koichi SAKA
Department of Mathematics, Akita University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1979)

We consider a generalization of Cauchy-Riemann equations in a
Riemannian symmetric space and we extend the theory of H? spaces
by using this generalization.

We list some examples of generalizations of Cauchy-Riemann
equations.

(a) E. M. Stein and C. Weiss [5] have defined Cauchy-Riemann
equations in the n-dimensional Euclidean space in the following setting :

(1) ST ou, [0z, =0,  ou,/ow,=du,|d%,.
i=1

They obtained that each #, is harmonic and that |«|? is subharmonic if
p=m—2)/(n—1) where |u|=(u’|+ - - - +|u, )"

(b) C. Fefferman and E. M. Stein [3] directly generalized the
system (1) in the n-dimensional Euclidean space.

(¢) The system (1) was extended to a compact Lie group by R. R.
Coifman and G. Weiss [2].

(d) Let M be a Riemannian manifold and let d be the exterior
differential operator on M and § the codifferential operator. Then the
deRham-Hodge equations dw=0w=0 can be considered as a generali-
zation of Cauchy-Riemann equations.

(e) The “spinor” system given by the Dirac operator on a spin
manifold is a generalization of Cauchy-Riemann equations (see M. F.
Atiyah [1]).

In this paper an extension of all these examples in a Riemannian
symmetric space will be given as follows :

(i) Weconsider a homogeneous vector bundle over a Riemannian
symmetric space such that its fiber is a Clifford algebra.

(ii) Next we consider C> cross sections on such a homogeneous
vector bundle in Lie algebra level (see Definition 1).

(iii) A generalization of Cauchy-Riemann equations is given by
a certain differential operator d and its dual § operating on such C~
cross sections, that is,

(2) do=0w=0
(see Definition 2). The examples (a), (b), (c) and (d) will arise when the
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Clifford algebra is an exterior algebra. The example (e) will arise
when the Clifford algebra is a “spinor” algebra.

In Theorems 1 and 2 we shall see that a solution w of the system
(2) is harmonic and |w|” is subharmonic if p=>(n—2)/(n—1) in a certain
sense, and using these properties we can extend results of the H? space
theory (the Poisson representation theorem, F'. and M. Riesz’s theorem,
etc.).

Let (&, ¢) be an effective orthogonal symmetric Lie algebra where
® is a Lie algebra over R and ¢ is an involutive automorphism of ®&.
In this paper we assume that (&, ¢) is of the noncompact type, of the
compact type or of the Euclidean type. Let &=8-+% be the decom-
position of & into the eigenspaces of ¢ for the eigenvalue +1 and —1,
respectively. Let (G, K) be a Riemannian symmetric pair associated
with (&, ¢). Let m and n denote the dimensions of & and P, respec-
tively. To avoid triviality we assume that n>=2. We denote by B the
Killing form of . We choose once and for all an orthogonal basis
Zy Ly Xy, oo, X, of & with respect to the Killing form B such
that Z,e &, j=1, ---,mand X, e, i=1, - - -, n. Moreover, we suppose
that

BZ, Z)=-1, j=1,.--,m
and

(i) if B(X,,X,))>0,i=1, -..,n then B(X,, X)=1,

(ii) if B(X,, X)<0, i=1, ---,n then B(X,, X,)=1,

(ii) if B(X,,X,)=0, ¢=1, --.,n then {X,} is orthonormal with
respect to an inner product which is invariant under Ad(k) (k € K).

We may consider elements of & as left invariant differential
operators on G. We denote by ¢, ---, ¢, a basis of the vector space
B corresponding to X, X,, ---,X,. We denote by C,(P), C_(¥) and
C,(P) the Clifford algebras defined by symmetric bilinear forms (¢;|e;).
=8y, (e;|e).=—3d,; and (e;|€),=0, i,j=1, ---,n, respectively. We
denote by C. (), C_(B) and C,(8) the complexifications of C,(R), C_(B)
and C,(P), respectively. C(P) denotes any one of C.(f), C_(P) and
C,(®), and C(R) denotes its cemplexifications. We denote by C=(G ; C(B))
and C=(G; C(R)) the spaces of all C~ functions on G with values in C()
and C(p), respectively. Let {c,,*} be a set of constants such that

ad(Z)X, =3 ¢, X,  k=1,---,m, j=1,---,n,
=1

where ad is the adjoint representation of ®. We define a linear map-
ping z(Z): C’(%)—»C’(EB), Z € & as follows:
(i) When C(R)=C . (), we set ¢(Z,)=left Cliff ord multiplication by
1/4) Zj ¢ ey, k=1, --.,m.

(i) When C(B)=C_(P), we set «(Z,) =left Cliff ord multiplication by
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—(1/4) 3¢ fee,,  k=1,---,m.
i’j

T(Zk)=Z Cijkeil(ej), k:l’ cee, M.
¥

A mapping c(e,): C®—C®), =1, ---,n, is as follows: If &e C(P)
has a form £=¢,+¢,6, where all terms of & and &, do not contain e
then we set ¢(e))E=¢,.
Definition 1. We put
C=(G; CR)={we C(G; CR)) : Zo=1(—Z)w for all Z c &)}

and

C2(G; CR)={we C~(G; C(P)): Zw=1(—Z)w for all Z ¢ &}.
We set

(@, 8)= j REOROY

for suitable elements w, £ € C“QG; C’(EB)), where the inner product {, )
is a natural inner product in C(p).
Definition 2. We define an operator
d: C2(G; CERN—C=(G; CER))
by

dw(g)=;; e.X 0(9)

and an operator 6: C(G; (:‘(EB))—»C?(G ; C‘(iB)) to be the formally adjoint
operator of d with respect to the inner product (, ).

We now come to the definition of a generalization of Cauchy-
Riemann equations. We define it by equations
(3) do=0w=0
for w e C2(G ; C(R)).

Example 1. We put G=R", the n-dimensional Euclidean space
and K={0}. Then (G,K) is a Riemannian symmetric pair of the
Euclidean type. The Clifford algebra C,(R") is the exterior algebra
of R*. For a 1-form we C=(R"; Cy(R"), the system (3) is the system
(1) of Cauchy-Riemann equations in the sense of E. M. Stein and G.
Weiss [6]. In general, for any form e C*(R"; C,(R"), the system
(8) is a generalization of Cauchy-Riemann equations in the sense of C.
Fefferman and E. M. Stein [3].

Example 2. Let (G, K) be a Riemannian symmetric pair as before
and let M=G/K be the Riemannian symmetric space. We denote by
N* T(M) the exterior algebra generated by the dual of the tangent
bundle over M. The bundle A* T(M) is a homogeneous vector bundle
over M associated with the adjoint representation (Ad (&), C,(B)) of K.
Then the space I'*(/\* T(M)) of all C~ cross sections of A\* T'(M) is
isomorphic to the space

Ci(G; CB)={we C~(G; C,(B)): w(gk)=Ad(kw(9), ke K, g € G}
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and this may be considered in Lie algebra level as the space
Co(G; CP={we C(G; C,(B)): Zo=0ad(— Z)w, Z c K}.

Hence a solution of equations (3) corresponds to a harmonic form in
the sense of deRham-Hodge. If G is a semisimple compact connected
Lie group and G* is the subgroup {(x, z): x € G} of the product group
G X @G, then (G X G, G*) is a Riemannian symmetric pair of the compact
type and G can be regarded as the Riemannian symmetric space G X
G/G*. 1In this case, for a 1-form v e C3,(GX GX R ; C,()), where R,
is the positive half line, the system (3) corresponds to the system of
R. R. Coifman and G. Weiss [2].

Example 3. Let V be a real vector space with even dimension »
=2l. Let Q, be the transformation of the complexified Clifford algebra
C_(V) given by right Clifford multiplication by v —1e,,_.e,;, i=1, - -,
l. We define

SV ={we C_.(V): Quo=—o0, j=1, ---,1}.
We put G=R" (n even) and K={0}. Then, for we C*(R"; S(R")
cC>(R"; C_(R™), a solution of the system (3) is a harmonic spinor for
the Dirac operator.

Let (G, K) be a Riemannian symmetric pair associated with an
effective orthogonal symmetric Lie algebra (&,s) of the noncompact
type and let M be the Riemannian symmetric space G/K with even
dimension n=21. S(M) denotes a homogeneous vector bundle associated
with a representation (Ad(k), S(R)) of K where Ad(k) is a lifting of
Ad(k) (ke K) to Spin(). Then, for

we C5(G; SR C%(G; C_(B),
a solution of the system (8) corresponds to a harmonic spinor for the
Dirac operator on S(M).

Theorem 1 (Harmonicity). Suppose that o is a solution of the
system (8) in C2(G; C(R)).

(1) When & is of the noncompact type, we have

(5 xr-252)=0  if CO=C.) or C.9
and
(Zxr-F2)o=0 i CO=Cop.
(ii) When & is of the compact type, we have
<]Z X2 ki Z;f)w=0 if CR)=C.®) or C_(P)
and
(Bxr+E25)0=0 i CR=Cop.
(iii) When & is of the Euclidean type, we have
(]ZZ; Xf)co:O.
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Theorem 2 (Subharmonicity). Suppose that o is a solution of the
system (3) in C2(G; C(P)) and p=(n—2)/(n—1).
(i) When & is of the compact type we have

(Lxr+2527)orz0  if O®=C.00 0 C.0)

and

(Z: Xf-!-kZ: Z;cz) lw]P=0 if C(P)=C,(R).

(ii) When & is of the noncompact type or of the Euclidean type
we have

(i X12> lo["=0.
Jj=1
Next we will present an extension of H? spaces. Let R be the

real line and let R, be the positive half line. We put G,=GXR, and
B'=PL+R. We define H? spaces (p>0) given by

Hr— {w e C=(G, ; CR)) : do=50=0,

|6 ]o= sup (j (@, O dx)‘“’<oo}.
t>0 G

We can construct a Poisson semigroup {P,},., defined on L*(G), 1<p
< o, by the Laplacian >}7_, X*+c¢ > 7, Z,* where
= {2 if CR)=C.(P) or C_(F)
1 if CER)=C,(P)
(see K. Saka [4]). The Poisson semigroup {P,},., can be also defined
on the space L?(G; C(¥')) of all L*>-functions on G with values in C(’).

A following theorem is an extension of the representation theorem
and F. and M. Riesz’s theorem. The theorem can be proved from
Theorems 1 and 2 (see K. Saka [4]).

Theorem 3. Assume that 1<p=<oco.

(i) Suppose that & is of the compact type and w € H?. Then w
can be represented as a Poisson integral P,f of a certain element f in
L*(G; C(R)).

(il) Suppose that & is of the noncompact type or of the Euclidean
type and o € H? satisfies the relation

(4) w(gk, t)=w(g,t) forkeK,te R, and g G.
Then w can be represented as a Poisson integral P, f of o certain element
S in L¥(G; C(E)).

A following characterization theorem can be derived from Theorem
2 (see K. Saka [4]).

Theorem 4. Assume that (n—1)/n<p<oco and that w is a solution
of the system (3) in C2(G, ; C(R)).

(i) Efither suppose that ® is of the compact type, or

(i) suppose that & is of the noncompact type or of the
Euclidean type and o satisfies the relation (4). Then o € H? if and only if
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sup lo(g, t)|=w*(g) € L*(G).

In this case, there are positive constants C and C’ such that
lolnx<Clo*|,=<C o]
Details of these results will appear elsewhere.
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