55. Parametrix for a Degenerate Parabolic Equation

By Chisato Iwasaki*) and Nobuhisa Iwasaki**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§ 1. Introduction. The purpose of this note is to construct a parametrix of a Cauchy problem 1) for a parabolic equation with a degenerate principal symbol:

1) $\begin{cases}\left(\frac{\partial}{\partial t}+p(x, D)\right) u(x, t)=f(x, t) & \text { on } \boldsymbol{R}^{n} \times[0, T], \\ u(x, 0)=g(x) & \text { on } \boldsymbol{R}^{n},\end{cases}$
$p(x, D)$ being a pseudo-differential operator whose symbol $p(x, \xi)$, independent of t, is in $S_{1,0}^{m}=L_{1 / 2}^{m}$ and has an asymptotic behavior 2);
2) $p(x, \xi) \sim p_{m}(x, \xi)+p_{m-1}(x, \xi)+\cdots$ as $|\xi| \rightarrow \infty$, $p_{\nu}(x, \xi)$ being positively homogeneous in ξ of order ν for $|\xi| \geqq 1$ and the principal symbol p_{m} being real non-negative ($m>1$).

Melin's result [4] proves the existence of fundamental solution E for 1) under some condition for subprincipal symbols using functional methods. Our method is direct. Under the same condition a complex phase function is given at first in a simple function of a principal symbol and a subprincipal symbol, and amplitudes follow inductively. Consequently a parametrix represented by pseudo-differential operators in $S_{1 / 2}^{0} 1 / 2=L_{0}^{0}$ is gotten. The parametrix implies the existence of fundamental solution and also Melin's result as a corollary.
§2. Notations. Here we employ the Weyl symbol for pseudodifferential operators, that is, a symbol $a(x, \xi)$ defines an operator $a(x, D)$ by 3$)$:
3) $\quad a(x, D) u(x)=(2 \pi)^{-n} \iint e^{i(x-y) \xi} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi$ for $u \in C_{0}^{\infty}$.

Hence p_{m-1} is the subprincipal symbol in usual sence. $\nabla^{k} a$ stands for a section of $T^{* k}\left(T^{*} R^{n}\right), k$-th symmetric tensor of $T^{*}\left(T^{*} \boldsymbol{R}^{n}\right)$, defined by 4) with respect to the canonical coordinate of $T^{*} \boldsymbol{R}^{n}$:
4)

$$
\begin{aligned}
& \sum_{|\alpha+\beta|=k} c_{\alpha \beta}^{k} a_{(\beta)}^{(\alpha)}(d \xi)^{\alpha}(d x)^{\beta} ; \\
& c_{\alpha \beta}^{k}=k!/ \alpha!\beta!\quad \text { and } \quad a_{(\beta)}^{(\alpha)}=\langle\xi\rangle^{(|\alpha|-|\beta| \mid / 2} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi) .
\end{aligned}
$$

σ^{1} is the canonical two form $d \xi \wedge d x$ on $T^{*} \boldsymbol{R}^{n} . \quad \sigma^{k}$ is its extension onto $T^{k}\left(T^{*} \boldsymbol{R}^{n}\right) \times T^{k}\left(T^{*} \boldsymbol{R}^{n}\right) . \quad J_{k}$ is the identification map of $T^{* k}\left(T^{*} \boldsymbol{R}^{n}\right)$ to $T^{k}\left(T^{*} R^{n}\right)$ defined by $\sigma^{k}\left(u, J_{k} f\right)=\langle u, f\rangle$. A bilinear form $\left\langle J_{k} f, g\right\rangle$ on $T^{* k}\left(T^{*} \boldsymbol{R}^{n}\right)$ is denoted by $\sigma_{k}(f, g)$. A linear map defined by $\nabla^{k} a$ from

[^0]$T^{j}\left(T^{*} \boldsymbol{R}^{n}\right)$ to $T^{* k-j}\left(T^{*} \boldsymbol{R}^{n}\right)$ is denoted by the same notation $V^{k} a$.
For the principal symbol p_{m}, the Hamilton vector field $h=J_{1} \nabla p_{m}$ and the Hamilton matrix $-i A=J_{1} \nabla^{2} p_{m}$ are well defined. $-i A$ is a linear map on $T\left(T^{*} R^{n}\right)$. $\tilde{T} r A$ stands for the positive trace, namely, the sum of real positive eigenvalues of A.

Proposition 1. If $a_{i} \in S_{\rho i i_{i}}^{m i}, i=1,2$ and $\rho_{i}>\delta_{3-i}$, then the symbol $a_{1} \circ a_{2}$ of the product operator $a_{1}(x, D) a_{2}(x, D)$ has the asymptotic expansion 5) where $\sigma_{0}\left(a_{1}, a_{2}\right)=a_{1} a_{2}$:
5) $\quad a_{1} \circ a_{2} \equiv \sum_{k=0}^{\infty}(2 i)^{-k}(k!)^{-1} \sigma_{k}\left(\nabla^{k} a_{1}, \nabla^{k} a_{2}\right) \bmod S^{-\infty}$.

Remark. $\quad \sigma_{k}\left(\nabla^{k} a_{1}, \nabla^{k} a_{2}\right)$ may be denoted by $\sigma\left(\nabla^{k} a_{1}, \nabla^{k} a_{2}\right)$ or $\sigma_{k}\left(a_{1}, a_{2}\right)$.
§3. Parametrix. We assume 6).
6) $\quad p_{m} \geqq 0$ on $T^{*} \boldsymbol{R}^{n}$ and $2 \operatorname{Re} p_{m-1}+\tilde{T} r A \geqq c|\xi|^{m-1}$ on the characteristic Σ of p_{m} for a positive constant c.

The parametrix is formed as the sum of two parts e and e^{\prime} having asymptotic expansions 7):
7) $E_{\rho}=e+e^{\prime}, e \sim \sum_{i=0}^{\infty} e_{i}, e^{\prime} \sim \sum_{i=0}^{\infty} e_{i}^{\prime}, e_{i}=f_{i} \exp \varphi \quad$ and $\quad e_{i}^{\prime}=f_{i}^{\prime} \exp \varphi$. Here φ is given in 8) and f_{0} and f_{0}^{\prime} are given in 12).
8) $\varphi=\psi_{1} \varphi_{1}+\left(1-\psi_{1}\right) \varphi_{2}$
9) $\varphi_{1}=-p_{m} t-p_{m-1} t-\left\langle\nabla p_{m}, F(A t / 2) J_{1} \nabla p_{m}\right\rangle t^{2}$

$$
-2^{-1} \operatorname{Tr}(\log [\cosh (A t / 2)])
$$

10) $\quad F(\lambda)=(4 i \lambda)^{-1}\left(1-\lambda^{-1} \tanh \lambda\right)$
11) $\varphi_{2}=-p_{m} t-\langle\xi\rangle^{m-1-\gamma} t$
12) $f_{0}=\psi_{2}$ and $f_{0}^{\prime}=1-\psi_{2}$
13) $\psi_{k}=\psi_{k}^{1} \psi_{k}^{2}, \quad \psi_{k}^{1}=\psi\left(k^{-1} p_{m}\langle\xi\rangle^{1-m-\varepsilon}\right), \quad \psi_{k}^{2}=\psi\left(k^{-1} t\langle\xi\rangle^{m-1-\delta}\right)$, and $\psi \in C^{\infty}[0, \infty)$ such that $\psi=1$ if $s \leqq 1, \psi^{\prime}<0$ if $1<s<2, \psi=0$ if $s \geqq 2$ and $\left|\psi^{(n)}\right| \leqq C_{n \tau}(1-\psi)^{\tau}$ if $0<\tau<1$.
14) $0 \leqq 12 \gamma<12 \delta<1-3 \varepsilon<1$.

Theorem 1. Under the assumption 6), if φ, f_{0} and f_{0}^{\prime} are defined by 8)-13) and if γ, δ and ε satisfy 14), then there exist $\left\{f_{j}\right\}$ and $\left\{f_{j}^{\prime}\right\}$ such that $\operatorname{supp} f_{j} \subset \operatorname{supp} \psi_{2}$ and $\operatorname{supp} f_{j}^{\prime} \subset \operatorname{supp}\left(1-\psi_{2}\right)$ and that E_{p} $=e(t, x, D)+e^{\prime}(t, x, D)$ defined by 7) is a parametrix of the problem 1) for some $T>0$, that is, E_{p} satisfies 15). Each e_{j} and e_{j}^{\prime} belongs to $S_{1,21 / 2}^{-\epsilon j / 2}$.
15) $\quad\left(\partial_{t}-p\right) E_{p} \equiv E_{p}\left(\partial_{t}-p\right) \equiv 0$ on $[0, T] \bmod S^{-\infty}$ and $\left.E_{p}\right|_{t=0}=I$.

Remark. The condition 14) guarantees that $F(A t / 2)$ and $\cosh (A t / 2)$ are well defined and that $\exp \varphi$ belongs to $S_{1 / 21 / 2}^{0}$.

The following two lemmas are important for the proof of Theorem 1. Equations in these lemmas are approximations of those corresponding to the Hamilton-Jacobi equation and the transport equation in real cases.

Notations. Classes of symbols $N(j, k, l)$ are defined by steps
through 16) and 17). (They are considered only on supp ψ_{2}.)
16) f belongs to $N(0,0, l)$ if and only if f is a C^{∞}-function in (t, x, ξ) such that for all integers $i, j \geqq 0$ and for some constants $c_{i j}$ and $d_{i j}$

$$
\left|\partial_{t}^{i} \nabla^{j} f\right| \leqq c_{i j}\left(1+t\langle\xi\rangle^{m-1}\right)^{d_{i j}}\langle\xi\rangle^{(l-j \epsilon+2 i(m-1)) / 2}
$$

17) $\quad N(j, k, l)(j$ and k are integers such that $j \geqq \max (k, 0))$ consist of C^{∞}-functions f such that $\left(t\langle\xi\rangle^{m-1}\right)^{k-j} f$ is a polynomial of homogeneous order k in $\zeta=t J_{1} \nabla p_{m}$ with coefficients in $N(0,0, l)$ if $k \geqq 0$ and that $\left(t\langle\xi\rangle^{m-1}\right)^{-1} f$ belongs to $N(0,0, l+k \varepsilon)$ if $k<0 . \quad(N(j, k, l)$ are the empty set if $j<\max (k, 0)$.)

Lemma 1. Let φ_{1} be defined by 9). Then, φ_{1} satisfies 18) with $g \in \sum_{i=0}^{3} N(i, i, 2 m-3)$.
18) $\frac{d}{d t}\left(\exp \varphi_{1}\right)+\sum_{\nu=0}^{2}(2 i)^{-\nu}(\nu!)^{-1} \sigma_{\nu}\left(p_{m}, \exp \varphi_{1}\right)+p_{m-1} \exp \varphi_{1}=g \exp \varphi_{1}$.

Lemma 2. For $g \in N(j, k, l)$ there exists $f \in N(j+1, k, l+2-2 m)$ which satisfies 19) and 20):
19) $\left.f\right|_{t=0}=0$.
20) $\frac{d}{d t} f+\sum_{\nu=1}^{2}(2 i)^{-\nu}(\nu!)^{-1}\left\{\sigma_{\nu}\left(p_{m}, f \exp \varphi_{1}\right)-\sigma_{\nu}\left(p_{m}, \exp \varphi_{1}\right) f\right\} \exp \left(-\varphi_{1}\right)$

$$
\equiv g \quad \bmod N(j+1, k-2, l)+N(j+1, k+1,-\varepsilon+l) .
$$

§4. Fundamental solution. Once a parametrix has been constructed, the Green operator E is easily obtained by solving a Volterra's integral equation 21) of pseudo-differential operators. It is shown by Proposition 2 that E is represented as a pseudo-differential operator.
21) $E(t)+\int_{0}^{t} E(t-s) G_{N}(s) d s=E_{N}(t)$,
where

$$
E_{N}(t)=\sum_{i=0}^{N}\left(e_{i}+e_{i}^{\prime}\right) \quad \text { and } \quad G_{N}(t)=\left(\frac{d}{d t}+p\right) E_{N}(t) .
$$

Proposition 2. Let $p_{j}(j=1, \cdots, \nu)$ be in $L_{0}^{m_{j}}$. Then $p=p_{1} \circ \cdots \circ p_{\nu}$ is in $L_{0}^{m_{0}}\left(m_{0}=\sum_{j=1}^{\nu} m_{j}\right)$ and satisfies 22) for all integer $l \geqq 0$ and for some integer l_{0} and constant C_{l} which are dependent on l but independent of ν.
22) $|p|_{i}^{\left(m_{0}\right)} \leqq\left.\left(C_{l}\right)^{\nu} \prod_{j=1}^{\nu}\left|p_{j}\right|\right|_{0} ^{\left(m_{j}\right)}$
where

$$
|p|_{l i}^{(m)}=\max _{k \leq i}\left\{\sup _{(x, \xi) \in R^{2 n}}\left|\nabla^{l} p(x, \xi)\right|\langle\xi\rangle^{-m}\right\} .
$$

(Refer to C. Iwasaki [3].)
Lemma 3. $G_{N}(t) \in L_{0}^{m-1-(N+1) s / 2}$.
Theorem 2. There exists a pseudo-differential operator $H_{N}(t)$
$\in L_{0}^{m-1-(N+1) \varepsilon / 2}$ such that $E(t)=E_{N}(t)+\int_{0}^{t} H_{N}(t-s) E_{N}(s) d s$ is the unique solution of 23), that is, $E(t) \delta_{x}$ is the fundamental solution of the Cauchy problem 21) in $\mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$.

Let $p=p_{m}+p_{m-1}$ be real. $(p+\lambda) \int_{0}^{T} e^{-\lambda s} E(s) d s=\int_{0}^{T} e^{-\lambda s} E(s) d s(p+\lambda)$ $=I-e^{-\lambda T} E(T)$. This means that $p+\lambda$ on S has the unique positive selfadjoint extension on $L^{2}\left(\boldsymbol{R}^{n}\right)$ for a sufficiently large constant λ.

Corollary (A. Melin [4]). There exists a real λ such that $\operatorname{Re}((p+\lambda) u, u) \geqq 0$ for $u \in \mathcal{S}$.
§5. Remarks. (1) We consider a more restrictive case. p_{m} vanishes exactly to second order on Σ, that is, $p_{m}(X) \geqq c(X) d(X, \Sigma)^{2}$, ($X=(x, \xi)$), for a continuous function $c(X)>0(\xi \neq 0)$ where $d(X, \Sigma)$ is the distance of X to Σ in $\boldsymbol{R}^{n} \times \boldsymbol{R} \times S^{n-1}$. (Refer to L. Hörmander [2].) In this case Σ is necessarily a C^{∞}-submanifold of $T^{*} \boldsymbol{R}^{n} \backslash\{0\}$. Therefore $d(X, \Sigma)$ is a C^{∞}-function at a neighborhood of Σ and there exists a C^{∞}-mapping $a(X)$ valued in Σ such that $d(X, a(X))=d(X, \Sigma)$. Let χ be a mapping such that $\chi(a-X)=\left(\langle\eta\rangle^{1 / 2}(y-x),\langle\eta\rangle^{-1 / 2}(\eta-\xi)\right) \in T_{a}\left(T^{*} \boldsymbol{R}^{n}\right)$ where $(y, \eta)=a(X)$. Then, we can replace the phase function φ_{1} at a neighborhood of Σ with φ_{3} defined in 23). If we add a condition that $4 \varepsilon \leqq 1$, Theorem 1 is valid for the same ε on any compact set of \boldsymbol{R}^{n}.

$$
\begin{align*}
\varphi_{3}= & -p_{m-1}(a) t+i \sigma^{1}(\chi(a-X), \tanh (A(a) t / 2) \chi(a-X)) \\
& -2^{-1} \operatorname{Tr}(\log [\cosh (A(a) t / 2)]) .
\end{align*}
$$

(φ_{3} of the simplest p_{m} is found in C. Hoel [1].)
(2) Considering the problem 1) on a compact C^{∞}-manifold, A. Menikoff and J. Sjöstrand [5] computed the rate of $\operatorname{Tr} E$ in t as t tended zero adding still more the condition that Σ is simplectic. Using the result of above Remark (1) we can get the same rate without this condition. $\operatorname{Tr} E=\left(c_{1}+o(1)\right) t^{-n / m},\left(c_{2}+o(1)\right) t^{-n / m} \log t$ or $\left(c_{3}+o(1)\right) t^{-(n-d) /(m-1)}$ depending on $d=\frac{1}{2} \operatorname{codim} \Sigma$ such that $m d-n \geqq 0$.

References

[1] C. Hoel: Fundamental solutions of some degenerate operators. J. Diff. Eqs., 15, 379-417 (1974).
[2] L. Hörmander: A class of hypoelliptic pseudodifferential operators with double characteristics. Math. Ann., 217, 165-188 (1975).
[3] C. Iwasaki: The fundamental solution for pseudo-differential operators of parabolic type. Osaka J. Math., 14, 569-592 (1977).
[4] A. Melin: Lower bounds for pseudo-differential operators. Ark. Mat., 9, 117-140 (1971).
[5] A. Menikoff and J. Sjöstrand: On the eigenvalues of a class of hypoelliptic operators. Math. Ann., 235, 55-85 (1978).

[^0]: *) Department of Mathematics, Osaka University.
 **) Research Institute for Mathematical Sciences, Kyoto University.

