55. Parametrix for a Degenerate Parabolic Equation

By Chisato IWASAKI^{*}) and Nobuhisa IWASAKI^{**}) (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§1. Introduction. The purpose of this note is to construct a parametrix of a Cauchy problem 1) for a parabolic equation with a degenerate principal symbol:

1) $\begin{cases} \left(\frac{\partial}{\partial t} + p(x, D)\right) u(x, t) = f(x, t) & \text{on } \mathbb{R}^n \times [0, T], \\ u(x, 0) = g(x) & \text{on } \mathbb{R}^n, \end{cases}$

p(x, D) being a pseudo-differential operator whose symbol $p(x, \xi)$, independent of t, is in $S_{1,0}^m = L_{1/2}^m$ and has an asymptotic behavior 2);

2) $p(x,\xi) \sim p_m(x,\xi) + p_{m-1}(x,\xi) + \cdots$ as $|\xi| \to \infty$, $p_{\nu}(x,\xi)$ being positively homogeneous in ξ of order ν for $|\xi| \ge 1$ and the principal symbol p_m being real non-negative (m > 1).

Melin's result [4] proves the existence of fundamental solution E for 1) under some condition for subprincipal symbols using functional methods. Our method is direct. Under the same condition a complex phase function is given at first in a simple function of a principal symbol and a subprincipal symbol, and amplitudes follow inductively. Consequently a parametrix represented by pseudo-differential operators in $S_{1/2}^0$ is gotten. The parametrix implies the existence of fundamental solution and also Melin's result as a corollary.

§2. Notations. Here we employ the Weyl symbol for pseudodifferential operators, that is, a symbol $a(x, \xi)$ defines an operator a(x, D) by 3):

3)
$$a(x,D)u(x)=(2\pi)^{-n}\int\int e^{i(x-y)\xi}a\left(\frac{x+y}{2},\xi\right)u(y)dyd\xi$$
 for $u\in C_0^{\infty}$.

Hence p_{m-1} is the subprincipal symbol in usual sence. $\nabla^k a$ stands for a section of $T^{**}(T^*\mathbf{R}^n)$, k-th symmetric tensor of $T^*(T^*\mathbf{R}^n)$, defined by 4) with respect to the canonical coordinate of $T^*\mathbf{R}^n$:

4) $\sum_{|\alpha+\beta|=k} c_{\alpha\beta}^k a_{\beta}^{(\alpha)} (d\xi)^{\alpha} (dx)^{\beta};$

 $a_{\alpha\beta}^k = k ! / \alpha ! \beta !$ and $a_{(\beta)}^{(\alpha)} = \langle \xi \rangle^{(|\alpha| - |\beta|)/2} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi).$

 σ^1 is the canonical two form $d\xi \wedge dx$ on $T^* \mathbb{R}^n$. σ^k is its extension onto $T^k(T^* \mathbb{R}^n) \times T^k(T^* \mathbb{R}^n)$. J_k is the identification map of $T^{*k}(T^* \mathbb{R}^n)$ to $T^k(T^* \mathbb{R}^n)$ defined by $\sigma^k(u, J_k f) = \langle u, f \rangle$. A bilinear form $\langle J_k f, g \rangle$ on $T^{*k}(T^* \mathbb{R}^n)$ is denoted by $\sigma_k(f, g)$. A linear map defined by $\nabla^k a$ from

^{*)} Department of Mathematics, Osaka University.

^{**)} Research Institute for Mathematical Sciences, Kyoto University.

 $T^{j}(T^{*}\mathbf{R}^{n})$ to $T^{*k-j}(T^{*}\mathbf{R}^{n})$ is denoted by the same notation $\nabla^{k}a$.

For the principal symbol p_m , the Hamilton vector field $h=J_1 \nabla p_m$ and the Hamilton matrix $-iA=J_1 \nabla^2 p_m$ are well defined. -iA is a linear map on $T(T^* \mathbb{R}^n)$. $\tilde{T}rA$ stands for the positive trace, namely, the sum of real positive eigenvalues of A.

Proposition 1. If $a_i \in S_{\rho_i \delta_i}^{m_i}$, i=1, 2 and $\rho_i > \delta_{3-i}$, then the symbol $a_1 \circ a_2$ of the product operator $a_1(x, D)a_2(x, D)$ has the asymptotic expansion 5) where $\sigma_0(a_1, a_2) = a_1a_2$:

5) $a_1 \circ a_2 \equiv \sum_{k=0}^{\infty} (2i)^{-k} (k!)^{-1} \sigma_k (\nabla^k a_1, \nabla^k a_2) \mod S^{-\infty}.$

Remark. $\sigma_k(\nabla^k a_1, \nabla^k a_2)$ may be denoted by $\sigma(\nabla^k a_1, \nabla^k a_2)$ or $\sigma_k(a_1, a_2)$. § 3. Parametrix. We assume 6).

6) $p_m \ge 0$ on $T^* \mathbb{R}^n$ and $2 \operatorname{Re} p_{m-1} + \tilde{T} r A \ge c |\xi|^{m-1}$ on the characteristic Σ of p_m for a positive constant c.

The parametrix is formed as the sum of two parts e and e' having asymptotic expansions 7):

7)
$$E_{\rho} = e + e', \ e \sim \sum_{i=0}^{\infty} e_i, \ e' \sim \sum_{i=0}^{\infty} e'_i, \ e_i = f_i \exp \varphi$$
 and $e'_i = f'_i \exp \varphi$.

Here φ is given in 8) and f_0 and f'_0 are given in 12).

- $8) \quad \varphi = \psi_1 \varphi_1 + (1 \psi_1) \varphi_2$
- 9) $\varphi_1 = -p_m t p_{m-1} t \langle \nabla p_m, F(At/2)J_1 \nabla p_m \rangle t^2$ -2⁻¹ Tr (log [cosh (At/2)])
- 10) $F(\lambda) = (4i\lambda)^{-1}(1-\lambda^{-1}\tanh\lambda)$
- 11) $\varphi_2 = -p_m t \langle \xi \rangle^{m-1-r} t$
- 12) $f_0 = \psi_2$ and $f'_0 = 1 \psi_2$

13) $\psi_k = \psi_k^1 \psi_k^2$, $\psi_k^1 = \psi(k^{-1} p_m \langle \xi \rangle^{1-m-\epsilon})$, $\psi_k^2 = \psi(k^{-1} t \langle \xi \rangle^{m-1-\delta})$, and $\psi \in C^{\infty}[0, \infty)$ such that $\psi = 1$ if $s \leq 1$, $\psi' < 0$ if 1 < s < 2, $\psi = 0$ if $s \geq 2$ and $|\psi^{(n)}| \leq C_{n,\tau} (1-\psi)^{\epsilon}$ if $0 < \tau < 1$.

14) $0 \leq 12\gamma < 12\delta < 1 - 3\epsilon < 1$.

Theorem 1. Under the assumption 6), if φ , f_0 and f'_0 are defined by 8)-13) and if γ , δ and ε satisfy 14), then there exist $\{f_i\}$ and $\{f'_i\}$ such that $\operatorname{supp} f_j \subset \operatorname{supp} \psi_2$ and $\operatorname{supp} f'_j \subset \operatorname{supp} (1-\psi_2)$ and that E_p = e(t, x, D) + e'(t, x, D) defined by 7) is a parametrix of the problem 1) for some T > 0, that is, E_p satisfies 15). Each e_j and e'_j belongs to $S_{1/2}^{-\epsilon j/2}$.

15) $(\partial_t - p)E_p \equiv E_p(\partial_t - p) \equiv 0 \text{ on } [0, T] \mod S^{-\infty} \text{ and } E_p|_{t=0} = I.$

Remark. The condition 14) guarantees that F(At/2) and $\cosh(At/2)$ are well defined and that $\exp \varphi$ belongs to $S^{0}_{1/2 \ 1/2}$.

The following two lemmas are important for the proof of Theorem 1. Equations in these lemmas are approximations of those corresponding to the Hamilton-Jacobi equation and the transport equation in real cases.

Notations. Classes of symbols N(j, k, l) are defined by steps

No. 7]

through 16) and 17). (They are considered only on supp ψ_2 .)

16) f belongs to N(0, 0, l) if and only if f is a C^{∞} -function in (t, x, ξ) such that for all integers $i, j \ge 0$ and for some constants c_{ij} and d_{ij}

$$|\partial_t^i \nabla^j f| \leq c_{ij} (1 + t \langle \xi \rangle^{m-1})^{d_{ij}} \langle \xi \rangle^{(l-j\varepsilon+2i(m-1))/2}$$

17) N(j, k, l) $(j \text{ and } k \text{ are integers such that } j \ge \max(k, 0))$ consist of C^{∞} -functions f such that $(t \le \xi^{m-1})^{k-j} f$ is a polynomial of homogeneous order k in $\zeta = t J_1 \nabla p_m$ with coefficients in N(0, 0, l) if $k \ge 0$ and that $(t \le \xi^{m-1})^{-j} f$ belongs to $N(0, 0, l+k\varepsilon)$ if k < 0. (N(j, k, l) are the empty set if $j < \max(k, 0)$.)

Lemma 1. Let φ_1 be defined by 9). Then, φ_1 satisfies 18) with $g \in \sum_{i=0}^{3} N(i, i, 2m-3).$ 18) $\frac{d}{dt} (\exp \varphi_1) + \sum_{u=0}^{2} (2i)^{-v} (v!)^{-1} \sigma_{v}(p_m, \exp \varphi_1) + p_{m-1} \exp \varphi_1 = g \exp \varphi_1.$

Lemma 2. For $g \in N(j, k, l)$ there exists $f \in N(j+1, k, l+2-2m)$ which satisfies 19) and 20):

19)
$$f|_{t=0} = 0.$$

20) $\frac{d}{dt}f + \sum_{\nu=1}^{2} (2i)^{-\nu} (\nu!)^{-1} \{ \sigma_{\nu}(p_m, f \exp \varphi_1) - \sigma_{\nu}(p_m, \exp \varphi_1) f \} \exp (-\varphi_1)$
 $\equiv g \mod N(j+1, k-2, l) + N(j+1, k+1, -\varepsilon+l).$

§4. Fundamental solution. Once a parametrix has been constructed, the Green operator E is easily obtained by solving a Volterra's integral equation 21) of pseudo-differential operators. It is shown by Proposition 2 that E is represented as a pseudo-differential operator.

21)
$$E(t) + \int_0^t E(t-s)G_N(s)ds = E_N(t),$$

where

$$E_{N}(t) = \sum_{i=0}^{N} (e_{i} + e'_{i}) \text{ and } G_{N}(t) = \left(\frac{d}{dt} + p\right) E_{N}(t).$$

Proposition 2. Let p_j $(j=1, ..., \nu)$ be in $L_0^{m_j}$. Then $p=p_1 \circ \cdots \circ p_{\nu}$ is in $L_0^{m_0}\left(m_0=\sum_{j=1}^{\nu}m_j\right)$ and satisfies 22) for all integer $l \ge 0$ and for some integer l_0 and constant C_i which are dependent on l but independent of ν .

22)
$$|p|_{l}^{(m_{0})} \leq (C_{l})^{\nu} \prod_{j=1}^{\nu} |p_{j}|_{l_{0}}^{(m_{j})}$$

where

$$|p|_{l}^{(m)} = \max_{k \leq l} \left\{ \sup_{(x,\xi) \in \mathbb{R}^{2n}} |\mathcal{V}^{l}p(x,\xi)| \langle \xi \rangle^{-m} \right\}.$$

(Refer to C. Iwasaki [3].)

Lemma 3. $G_N(t) \in L_0^{m-1-(N+1)\epsilon/2}$.

Theorem 2. There exists a pseudo-differential operator $H_N(t)$

 $\in L_0^{m-1-(N+1)\epsilon/2}$ such that $E(t) = E_N(t) + \int_0^t H_N(t-s)E_N(s)ds$ is the unique solution of 23), that is, $E(t)\delta_x$ is the fundamental solution of the Cauchy problem 21) in $S'(\mathbf{R}^n)$.

Let $p = p_m + p_{m-1}$ be real. $(p+\lambda) \int_0^T e^{-\lambda s} E(s) ds = \int_0^T e^{-\lambda s} E(s) ds (p+\lambda)$ = $I - e^{-\lambda T} E(T)$. This means that $p+\lambda$ on S has the unique positive selfadjoint extension on $L^2(\mathbf{R}^n)$ for a sufficiently large constant λ .

Corollary (A. Melin [4]). There exists a real λ such that $\operatorname{Re}((p+\lambda)u, u) \geq 0$ for $u \in S$.

§ 5. Remarks. (1) We consider a more restrictive case. p_m vanishes exactly to second order on Σ , that is, $p_m(X) \ge c(X)d(X, \Sigma)^2$, $(X=(x,\xi))$, for a continuous function c(X) > 0 ($\xi \ne 0$) where $d(X, \Sigma)$ is the distance of X to Σ in $\mathbb{R}^n \times \mathbb{R} \times S^{n-1}$. (Refer to L. Hörmander [2].) In this case Σ is necessarily a C^{∞} -submanifold of $T^*\mathbb{R}^n \setminus \{0\}$. Therefore $d(X, \Sigma)$ is a C^{∞} -function at a neighborhood of Σ and there exists a C^{∞} -mapping a(X) valued in Σ such that $d(X, a(X)) = d(X, \Sigma)$. Let χ be a mapping such that $\chi(a-X) = (\langle \eta \rangle^{1/2}(y-x), \langle \eta \rangle^{-1/2}(\eta-\xi)) \in T_a(T^*\mathbb{R}^n)$ where $(y, \eta) = a(X)$. Then, we can replace the phase function φ_1 at a neighborhood of Σ with φ_3 defined in 23). If we add a condition that $4\varepsilon \le 1$, Theorem 1 is valid for the same ε on any compact set of \mathbb{R}^n .

23) $\varphi_3 = -p_{m-1}(a)t + i\sigma'(\chi(a-X), \tanh(A(a)t/2)\chi(a-X))$

$$-2^{-1} \operatorname{Tr} \left(\log \left[\cosh \left(A(a)t/2 \right) \right] \right)$$

(φ_3 of the simplest p_m is found in C. Hoel [1].)

(2) Considering the problem 1) on a compact C^{∞} -manifold, A. Menikoff and J. Sjöstrand [5] computed the rate of Tr E in t as t tended zero adding still more the condition that Σ is simplectic. Using the result of above Remark (1) we can get the same rate without this condition. Tr $E = (c_1 + o(1))t^{-n/m}, (c_2 + o(1))t^{-n/m}\log t$ or $(c_3 + o(1))t^{-(n-d)/(m-1)}$ depending on $d = \frac{1}{2}$ codim Σ such that $md - n \ge 0$.

References

- [1] C. Hoel: Fundamental solutions of some degenerate operators. J. Diff. Eqs., 15, 379-417 (1974).
- [2] L. Hörmander: A class of hypoelliptic pseudodifferential operators with double characteristics. Math. Ann., 217, 165-188 (1975).
- [3] C. Iwasaki: The fundamental solution for pseudo-differential operators of parabolic type. Osaka J. Math., 14, 569-592 (1977).
- [4] A. Melin: Lower bounds for pseudo-differential operators. Ark. Mat., 9, 117-140 (1971).
- [5] A. Menikoff and J. Sjöstrand: On the eigenvalues of a class of hypoelliptic operators. Math. Ann., 235, 55-85 (1978).