6. On the Intersection Number of the Path of a Diffusion and Chains

By Shojiro MANABE Department of Mathematics, College of General Education, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)

1. We are concerned with the following problem which was already considered by H. P. McKean [4] for the Brownian motion: in what manner does the path of a diffusion on a manifold wind around a fixed point or a hole asymptotically? For this purpose, we shall define a stochastic version of the intersection number. As is wellknown, the usual intersection number can be represented by the integral of a differential double 1-form with singularity ([1]). Although the path of the diffusion is not smooth, we can define its intersection number with a chain by using the integral of the 1-form along the path defined in [2] (see also [3]). We then study the asymptotic behaviors of such random intersection numbers to get some solutions of the above mentioned problem.

2. Let M be a d-dimensional connected orientable Riemannian manifold with a Riemannian metric g and Δ be the Laplace-Beltrami operator corresponding to g. Let $L=\Delta/2+b$, where b is a C^{∞} vector field on M. Consider the minimal diffusion process $X=(X_t, P_x)$ on M corresponding to L. For any continuous mapping $c:[0,t] \rightarrow M$, we denote by c[0,t] the curve determined by $c:c[0,t]=\{c(s); 0 \leq s \leq t\}$. We regard c[0,t] as a singular 1-chain ([5]).

To define the intersection number, we prepare some notations. We principally use the notations of de Rham's book ([1]). Let $\overline{\mathcal{D}}$ be the space of square integrable currents. Set $\overline{\mathcal{D}}_1 = \{T \in \overline{\mathcal{D}} ; T \text{ is homologous}$ to zero}, $\overline{\mathcal{D}}_2 = \{T \in \overline{\mathcal{D}} ; T \text{ is cohomologous to zero}\}$ and $\mathcal{D}_3 = \{T \in \overline{\mathcal{D}} ; T \text{ is}$ harmonic}. Then $\overline{\mathcal{D}} = \overline{\mathcal{D}}_1 + \overline{\mathcal{D}}_2 + \mathcal{D}_3$. Let H_1, H_2, H_3 be the projections on $\overline{\mathcal{D}}_1, \overline{\mathcal{D}}_2, \mathcal{D}_3$ respectively. For any 1-current T which is continuous in mean at infinity, we define $H_i T$ by $(H_i T, \phi) = (T, H_i \phi), \phi \in C^{\infty} \cap \overline{\mathcal{D}},$ i=1,2,3. Then T can be decomposed uniquely as follows: $T=H_1T$ $+H_2T+H_3T$. Denote by $h_i(x,y)$ the kernel of H_i , i=1,2,3. Let e(x,y) $=*_y h_1(x,y)$ be the adjoint form of h_1 (as 1-form of y). Then e is C^{∞} if $x \neq y$. It is known that e(x, y) can be written locally as follows. Let Δ be the Hodge-Kodaira's Laplacian acting on 1-forms. We can choose a domain U on which a fundamental solution $\gamma(x, y)$ for $\Delta \alpha = \beta$ exists. Let $\sigma(x, y)$ be a C^{∞} function supported in $U \times U$ with (i) $0 \leq \sigma \leq 1$, (ii) $\sigma(x, y) = 1$ on a neighborhood of the diagonal set and (iii) $\sigma(x, y) = \sigma(y, x)$. We set $\gamma_1 = \sigma \gamma$. There exists a C^{∞} double 1-form $\psi(x, y)$ such that $e(x, y) = d_x \delta_{x^*y} \gamma_1(x, y) + *_y \psi(x, y)$, $x, y \in U$, where d is the exterior differential operator and δ is the adjoint of d. See [1] for the details.

Now we shall define the intersection number I(X[0, t], c) of the path of X and a C^{∞} singular (d-1)-chain c. In the following, we assume $x_0 \notin c$. For any positive integer N, we set $\sigma_N = \inf \{t; \text{dist}(X_t, \partial c) \leq N^{-1}\}$. First we consider the case that the chain c is contained in a subdomain $U_0 \subset U$. Let f be a C^{∞} function on M such that (i) $0 \leq f \leq 1$ and (ii) f = 1

on
$$U_0$$
, $f=0$ outside U . Define $\int_{x \in X[0, t \wedge \sigma_N]} e(x, y) \ (y \in c)$ by
(1) $\int_{x \in X[0, t \wedge \sigma_N]} e(x, y) = \delta_{x} *_{y} \gamma_1(X_{t \wedge \sigma_N}, y) - \delta_{x} *_{y} \gamma_1(X_0, y) + \int_{x \in X[0, t \wedge \sigma_N]} \{f(x) *_{y} \psi(x, y) + (1 - f(x))e(x, y) + (f(x) - 1)d_x \delta_x *_{y} \gamma_1\}, P_{x_0}$ -a.s.

In the above, the second term is well-defined as the integral of 1-form along the path ([2]). The integral (1) is smooth in $y \in c$ for almost all $\omega(P_{x_0})$. So the integral $\int_{y \in c} \int_{x \in X[0, t \land \sigma_N]} e(x, y)$ is well-defined. Define $I_N(X[0, t], c)$ by $I_N(X[0, t], c)$

$$= \int_{y \in c} \int_{x \in X[0, t \wedge \sigma_N]} e(x, y) - \int_{x \in X[0, t \wedge \sigma_N]} \int_{y \in c} e(x, y), P_{x_0}\text{-a.s.}$$

The second term of the right hand side is also well-defined as the integral of 1-form along the path ([2]), since $\int_{y \in c} e(x, y)$ is a C^{∞} 1-form in x for $x \notin \partial c$ ([1]). In the general case, we can cover the chain c by a finite number of U's on which a fundamental solution exists. By using a partition of unity, we can define $I_N(X[0, t], c)$ by the same way as above. We can show that if $x_0 \notin c$, then there exists a limit

$$I(X[0, t], c) = \lim_{N \to \infty} I_N(X[0, t], c), \qquad P_{x_0}$$
-a.s.

We call the limit I(X[0, t], c) the intersection number of the path of diffusion X and the (d-1)-chain c.

To clarify the relation between the intersection number defined above and the usual intersection number $I^*(c, c')$, we state the following approximation theorem. Let Δ_n be a subdivision of $[0, \infty): 0=s_{n,0} < s_{n,1}$ $< \cdots$ with $|s_{n,k}-s_{n,k-1}| < n^{-1}$, $k=1, 2, \cdots$ (see [2]). Let X_n be a polygonal geodesic approximation of X obtained by joining $X(s_{n,k-1})$ and $X(s_{n,k})$. Then it is easy to see that $X_n[0, t]$ can be regarded as a C^{∞} singular 1-chain ([5]). Therefore $I^*(X_n[0, t], c)$ is well-defined.

Theorem. If $x \notin c$, then there exists a subsequence $\{n_k\}$ such that $I^*(X_{n_k}[0, t], c) \rightarrow I(X[0, t], c)$ as $k \rightarrow \infty$, P_x -a.s.

It follows from this theorem that I(X[0, t], c) has similar properties as the ordinary one:

Proposition. I(X[0, t], c) has the following properties for almost all $\omega(P_x)$.

(i) If $x \notin c_1 \cup c_2$, then $I(X[0, t], \lambda_1c_1 + \lambda_2c_2) = \lambda_1I(X[0, t], c_1) + \lambda_2I(X[0, t], c_2), \lambda_1, \lambda_2 \in \mathbf{R}$, where $\lambda_1c_1 + \lambda_2c_2$ is a linear combination of c_1 and c_2 as (d-1)-chains.

(ii) If c is a cycle, then I(X[0, t], c) depends only on the homology class of X[0, t].

(iii) If $X[0, t] \cap c = \phi$, then I(X[0, t], c) = 0.

(iv) If c is a (d-1)-chain with integral coefficients, then I(X[0, t], c) is an integer.

3. Throughout this section we assume that M is compact. Since M is compact, (i) there exists a unique invariant measure μ of X with $\mu(M)=1$ and (ii) the potential operator R of X is well-defined: $Rf(x) = \int_{0}^{\infty} (E_x f(X_i) - \bar{f}) dt$, where $\bar{f} = \int_{M} f(x) \mu(dx)$ ([6]). Let c_1, \dots, c_k be a basis of (d-1)-dimensional homology group $H_{d-1}(M)$ of M. We consider the asymptotic behavior of the path and each c_i . We set $\alpha_i = \int_{c_i} *_y h_3(x, y), i=1, \dots, k$. Then α_i is a harmonic 1-form $(i=1, \dots, k)$. Set $f_i(x) = \alpha_i(b)(x)$. We define

$$a_{i} = \left(\int_{M} \langle \alpha_{i} + dRf_{i}, \alpha_{i} + dRf_{i} \rangle(x) \mu(dx) \right)^{1/2},$$

where $\langle , \rangle(x)$ is the inner product of $T^*_x(M)$. Then we have the following

Theorem. (i) For any
$$i=1, \dots, k$$
, we have

$$\lim_{t \to \infty, t \in Q} \frac{1}{t} I(X[0, t], c_i) = \int_{\mathcal{M}} f_i(x) \mu(dx), \qquad P_x\text{-a.s.}$$

(ii) If $\int_{M} f_{i}(x)\mu(dx) = 0$, we have $\lim_{t \to \infty, t \in \mathcal{Q}} \frac{I(X[0, t], c_{i})}{\sqrt{2t \log \log t}} = -\lim_{t \to \infty, t \in \mathcal{Q}} \frac{I(X[0, t], c_{i})}{\sqrt{2t \log \log t}} = a_{i}, \quad P_{x}\text{-a.s.}$

As an easy consequence of this theorem, we have

Corollary. Let M be a compact Riemannian surface with genus h. Let $(A_i, B_i)_{1 \le i \le h}$ be a canonical homology basis. Denote by C_i the hole corresponding to (A_i, B_i) , i=1, ..., h. Let α_i (or β_i) be the 1-form corresponding to A_i (or B_i). If $\int_M \alpha_i(b)(x)\mu(dx) > 0$ (or <0), then for almost all $\omega(P_x)$, the path X[0, t] winds C_i infinitely often only in the positive (or negative) direction along B_i . If $\int_M \alpha_i(b)(x)\mu(dx)=0$, then for almost all $\omega(P_x)$, the path X[0, t] winds C_i infinitely often in both directions along B_i . The similar result holds for β_i .

4. In this section, we assume that $M = R^2$. Let (x^1, x^2) be the

S. MANABE

canonical coordinate of \mathbb{R}^2 . We give \mathbb{R}^2 the Riemannian metric $g_{ij} = \delta_{ij}$, i, j=1,2. Let $b = -x^2 b(r)(\partial/\partial x^1) + x^1 b(r)(\partial/\partial x^2)$, $r = ((x^1)^2 + (x^2)^2)^{1/2}$. We consider the diffusion X corresponding to L as before. Let us consider the intersection number I(X[0,t],c), where $c=[0,\infty)$. We define this by $I(X[0,t],c) = \lim_{n\to\infty} I(X[0,t],c_n)$, where $c_n = [0,n)$. Set $\psi_t = \int_0^t r_s^{-2} ds$. Then the process B(t) defined by $B(t) = \log (r(\psi^{-1}(t))/r_0)$ is a Brownian motion. Let L(t) be the local time at 0 of B. Then it is easy to show that I(X[0,t],c) differs from $-\frac{1}{2\pi} \int_{x[0,t]} d\theta$ by only a bounded term, where $\theta = \arg(x)$. We note that $\arg X(t) = \int_{x[0,t]} d\theta$ (see [3]). We have the following

Theorem. Let
$$x \neq 0$$
. (i) If $b \in L^1([0, \infty), rdr)$, then

$$\overline{\lim_{t \to \infty}} \frac{\arg X(t)}{L(\psi(t))} = -\lim_{t \to \infty} \frac{\arg X(t)}{L(\psi(t))} = \infty, \quad P_x\text{-a.s.}$$
(ii) If $b(r) = r^{-\beta}$, $\beta \leq 2$, then for any $0 < \delta < 1$,

$$\lim_{t \to \infty} \frac{\arg X(t)}{L(\psi(t))^2 \{\log L(\psi(t))\}^{-\delta}} = -\infty, \quad P_x\text{-a.s.}$$

References

- [1] G. de Rham: Variétés Différentiables. Hermann (1960).
- [2] N. Ikeda and S. Manabe: Integral of differential forms along the path of diffusion processes (to appear).
- [3] ——: Stochastic integral of differential forms and its applications. Proc. Internat. Conf. on Stoch. Analysis (ed. by A. Friedman and M. Pinsky) Northwestern Univ., pp. 175–185 (1978).
- [4] H. P. McKean: Stochastic Integrals. Academic Press (1969).
- [5] E. H. Spanier: Algebraic Topology. McGraw-Hill (1966).
- [6] H. Watanabe: Potential operator of a recurrent strong Feller process in the strict sense and boundary value problem. J. Math. Soc. Japan, 16, 83-95 (1964).