6. On the Intersection Number of the Path of a Diffusion and Chains

By Shojiro Manabe
Department of Mathematics, College of General Education, Osaka University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)

1. We are concerned with the following problem which was already considered by H. P. McKean [4] for the Brownian motion: in what manner does the path of a diffusion on a manifold wind around a fixed point or a hole asymptotically? For this purpose, we shall define a stochastic version of the intersection number. As is wellknown, the usual intersection number can be represented by the integral of a differential double 1-form with singularity ([1]). Although the path of the diffusion is not smooth, we can define its intersection number with a chain by using the integral of the 1-form along the path defined in [2] (see also [3]). We then study the asymptotic behaviors of such random intersection numbers to get some solutions of the above mentioned problem.
2. Let M be a d-dimensional connected orientable Riemannian manifold with a Riemannian metric g and Δ be the Laplace-Beltrami operator corresponding to g. Let $L=\Delta / 2+b$, where b is a C^{∞} vector field on M. Consider the minimal diffusion process $X=\left(X_{t}, P_{x}\right)$ on M corresponding to L. For any continuous mapping $c:[0, t] \rightarrow M$, we denote by $c[0, t]$ the curve determined by $c: c[0, t]=\{c(s) ; 0 \leqq s \leqq t\}$. We regard $c[0, t]$ as a singular 1-chain ([5]).

To define the intersection number, we prepare some notations. We principally use the notations of de Rham's book ([1]). Let \bar{D} be the space of square integrable currents. Set $\overline{\mathscr{D}}_{1}=\{T \in \overline{\mathscr{D}} ; T$ is homologous to zero $\}, \overline{\mathcal{D}}_{2}=\{T \in \overline{\mathscr{D}} ; T$ is cohomologous to zero $\}$ and $\mathscr{D}_{3}=\{T \in \overline{\mathscr{D}} ; T$ is harmonic $\}$. Then $\overline{\mathscr{D}}=\overline{\mathscr{D}}_{1}+\overline{\mathscr{D}}_{2}+\mathscr{D}_{3}$. Let H_{1}, H_{2}, H_{3} be the projections on $\overline{\mathscr{D}}_{1}, \overline{\mathscr{D}}_{2}, \mathscr{D}_{3}$ respectively. For any 1-current T which is continuous in mean at infinity, we define $H_{i} T$ by $\left(H_{i} T, \phi\right)=\left(T, H_{i} \phi\right), \phi \in C^{\infty} \cap \overline{\mathscr{D}}$, $i=1,2,3$. Then T can be decomposed uniquely as follows: $T=H_{1} T$ $+H_{2} T+H_{3} T$. Denote by $h_{i}(x, y)$ the kernel of $H_{i}, i=1,2,3$. Let $e(x, y)$ $=*_{y} h_{1}(x, y)$ be the adjoint form of h_{1} (as 1-form of y). Then e is C^{∞} if $x \neq y$. It is known that $e(x, y)$ can be written locally as follows. Let Δ be the Hodge-Kodaira's Laplacian acting on 1 -forms. We can choose a domain U on which a fundamental solution $\gamma(x, y)$ for $\Delta \alpha=\beta$ exists. Let $\sigma(x, y)$ be a C^{∞} function supported in $U \times U$ with (i) $0 \leqq \sigma \leqq 1$, (ii)
$\sigma(x, y)=1$ on a neighborhood of the diagonal set and (iii) $\sigma(x, y)=\sigma(y, x)$. We set $\gamma_{1}=\sigma \gamma$. There exists a C^{∞} double 1-form $\psi(x, y)$ such that $e(x, y)$ $=d_{x} \delta_{x} *_{y} \gamma_{1}(x, y)+*_{y} \psi(x, y), x, y \in U$, where d is the exterior differential operator and δ is the adjoint of d. See [1] for the details.

Now we shall define the intersection number $I(X[0, t], c)$ of the path of X and a C^{∞} singular ($d-1$)-chain c. In the following, we assume $x_{0} \notin c$. For any positive integer N, we set $\sigma_{N}=\inf \left\{t ; \operatorname{dist}\left(X_{t}, \partial c\right) \leqq N^{-1}\right\}$. First we consider the case that the chain c is contained in a subdomain $U_{0} \subset U$. Let f be a C^{∞} function on M such that (i) $0 \leqq f \leqq 1$ and (ii) $f=1$ on $U_{0}, f=0$ outside U. Define $\int_{x \in X\left[0, t \wedge \sigma_{N}\right]} e(x, y)(y \in c)$ by

$$
\begin{align*}
& \int_{x \in x\left[0, t \wedge \sigma_{N}\right]} e(x, y)= \delta_{x_{x} *_{y} \gamma_{1}\left(X_{t \wedge \sigma_{N}}, y\right)-\delta_{x^{*}} \psi_{y} \gamma_{1}\left(X_{0}, y\right)} \tag{1}\\
& \quad+\int_{x \in X\left[0, t \wedge \sigma_{N}\right]}\left\{f(x) *_{y} \psi(x, y)+(1-f(x)) e(x, y)\right. \\
&\left.+(f(x)-1) d_{x} \delta_{x} *_{y} \gamma_{1}\right\}, P_{x_{0}} \text { a.s. }
\end{align*}
$$

In the above, the second term is well-defined as the integral of 1 -form along the path ([2]). The integral (1) is smooth in $y \in c$ for almost all $\omega\left(P_{x_{0}}\right)$. So the integral $\int_{y \in c} \int_{x \in x\left[0, t \wedge \sigma_{N}\right]} e(x, y)$ is well-defined. Define $I_{N}(X[0, t], c)$ by

$$
\begin{aligned}
& I_{N}(X[0, t], c) \\
& \quad=\int_{y \in c} \int_{x \in X\left[0, t \wedge \sigma_{N}\right]} e(x, y)-\int_{x \in x\left[0, t \wedge \sigma_{N}\right]} \int_{y \in c} e(x, y), P_{x_{0}-\mathrm{a} . \mathrm{s} .} .
\end{aligned}
$$

The second term of the right hand side is also well-defined as the integral of 1-form along the path ([2]), since $\int_{y \in c} e(x, y)$ is a C^{∞} 1-form in x for $x \notin \partial c$ ([1]). In the general case, we can cover the chain c by a finite number of U 's on which a fundamental solution exists. By using a partition of unity, we can define $I_{N}(X[0, t], c)$ by the same way as above. We can show that if $x_{0} \notin c$, then there exists a limit

$$
I(X[0, t], c)=\lim _{N \rightarrow \infty} I_{N}(X[0, t], c), \quad P_{x_{0}} \text {-a.s. }
$$

We call the limit $I(X[0, t], c)$ the intersection number of the path of diffusion X and the ($d-1$)-chain c.

To clarify the relation between the intersection number defined above and the usual intersection number $I^{*}\left(c, c^{\prime}\right)$, we state the following approximation theorem. Let Δ_{n} be a subdivision of $[0, \infty): 0=s_{n, 0}<s_{n, 1}$ $<\ldots$ with $\left|s_{n, k}-s_{n, k-1}\right|<n^{-1}, k=1,2, \cdots$ (see [2]). Let X_{n} be a polygonal geodesic approximation of X obtained by joining $X\left(s_{n, k-1}\right)$ and $X\left(s_{n, k}\right)$. Then it is easy to see that $X_{n}[0, t]$ can be regarded as a C^{∞} singular 1-chain ([5]). Therefore $I^{*}\left(X_{n}[0, t], c\right)$ is well-defined.

Theorem. If $x \notin c$, then there exists a subsequence $\left\{n_{k}\right\}$ such that

$$
I^{*}\left(X_{n_{k}}[0, t], c\right) \rightarrow I(X[0, t], c) \quad \text { as } k \rightarrow \infty, P_{x^{-}} \text {-a.s. }
$$

It follows from this theorem that $I(X[0, t], c)$ has similar properties as the ordinary one:

Proposition. $I(X[0, t], c)$ has the following properties for almost all $\omega\left(P_{x}\right)$.
(i) If $x \notin c_{1} \cup c_{2}$, then $I\left(X[0, t], \lambda_{1} c_{1}+\lambda_{2} c_{2}\right)=\lambda_{1} I\left(X[0, t], c_{1}\right)$ $+\lambda_{2} I\left(X[0, t], c_{2}\right), \lambda_{1}, \lambda_{2} \in \boldsymbol{R}$, where $\lambda_{1} c_{1}+\lambda_{2} c_{2}$ is a linear combination of c_{1} and c_{2} as (d-1)-chains.
(ii) If c is a cycle, then $I(X[0, t], c)$ depends only on the homology class of $X[0, t]$.
(iii) If $X[0, t] \cap c=\phi$, then $I(X[0, t], c)=0$.
(iv) If c is a (d-1)-chain with integral coefficients, then $I(X[0, t], c)$ is an integer.
3. Throughout this section we assume that M is compact. Since M is compact, (i) there exists a unique invariant measure μ of X with $\mu(M)=1$ and (ii) the potential operator R of X is well-defined: $R f(x)$ $=\int_{0}^{\infty}\left(E_{x} f\left(X_{t}\right)-\bar{f}\right) d t$, where $\bar{f}=\int_{M} f(x) \mu(d x)$ ([6]). Let c_{1}, \cdots, c_{k} be a basis of ($d-1$)-dimensional homology group $H_{d-1}(M)$ of M. We consider the asymptotic behavior of the path and each c_{i}. We set α_{i} $=\int_{c_{i}} *_{y} h_{3}(x, y), i=1, \cdots, k$. Then α_{i} is a harmonic 1 -form ($i=1, \cdots$, $k)$. Set $f_{i}(x)=\alpha_{i}(b)(x)$. We define

$$
a_{i}=\left(\int_{M}\left\langle\alpha_{i}+d R f_{i}, \alpha_{i}+d R f_{i}\right\rangle(x) \mu(d x)\right)^{1 / 2},
$$

where $\langle\rangle,(x)$ is the inner product of $T_{x}^{*}(M)$. Then we have the following

Theorem. (i) For any $i=1, \cdots, k$, we have

$$
\lim _{t \rightarrow \infty, t \in \ell} \frac{1}{t} I\left(X[0, t], c_{i}\right)=\int_{M} f_{i}(x) \mu(d x), \quad P_{x} \text {-a.s. }
$$

(ii) If $\int_{m} f_{i}(x) \mu(d x)=0$, we have

$$
\varlimsup_{t \rightarrow \infty, t \in Q} \frac{I\left(X[0, t], c_{i}\right)}{\sqrt{2 t \log \log t}}=-\lim _{t \rightarrow \infty, t \in Q} \frac{I\left(X[0, t], c_{i}\right)}{\sqrt{2 t \log \log t}}=a_{i}, \quad P_{x}-\mathrm{a} . \mathrm{s} .
$$

As an easy consequence of this theorem, we have
Corollary. Let M be a compact Riemannian surface with genus h. Let $\left(A_{i}, B_{i}\right)_{1 \leq i \leqq h}$ be a canonical homology basis. Denote by C_{i} the hole corresponding to $\left(A_{i}, B_{i}\right), i=1, \cdots, h$. Let α_{i} (or β_{i}) be the 1-form corresponding to A_{i} (or B_{i}). If $\int_{M} \alpha_{i}(b)(x) \mu(d x)>0$ (or <0), then for almost all $\omega\left(P_{x}\right)$, the path $X[0, t]$ winds C_{i} infinitely often only in the positive (or negative) direction along B_{i}. If $\int_{M} \alpha_{i}(b)(x) \mu(d x)=0$, then for almost all $\omega\left(P_{x}\right)$, the path $X[0, t]$ winds C_{i} infinitely often in both directions along B_{i}. The similar result holds for β_{i}.
4. In this section, we assume that $M=\boldsymbol{R}^{2}$. Let (x^{1}, x^{2}) be the
canonical coordinate of \boldsymbol{R}^{2}. We give \boldsymbol{R}^{2} the Riemannian metric $g_{i j}=$ $\delta_{i j}, i, j=1,2$. Let $b=-x^{2} b(r)\left(\partial / \partial x^{1}\right)+x^{1} b(r)\left(\partial / \partial x^{2}\right), \quad r=\left(\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right)^{1 / 2}$. We consider the diffusion X corresponding to L as before. Let us consider the intersection number $I(X[0, t], c)$, where $c=[0, \infty)$. We define this by $I(X[0, t], c)=\lim _{n \rightarrow \infty} I\left(X[0, t], c_{n}\right)$, where $c_{n}=[0, n)$. Set ψ_{t} $=\int_{0}^{t} r_{s}^{-2} d s$. Then the process $B(t)$ defined by $B(t)=\log \left(r\left(\psi^{-1}(t)\right) / r_{0}\right)$ is a Brownian motion. Let $L(t)$ be the local time at 0 of B. Then it is easy to show that $I(X[0, t], c)$ differs from $-\frac{1}{2 \pi} \int_{x[0, t]} d \theta$ by only a bounded term, where $\theta=\arg (x)$. We note that $\arg X(t)=\int_{X[0, t]} d \theta$ (see [3]). We have the following

Theorem. Let $x \neq 0$. (i) If $b \in L^{1}([0, \infty), r d r)$, then

$$
\varlimsup_{t \rightarrow \infty} \frac{\arg X(t)}{L(\psi(t))}=-\varliminf_{t \rightarrow \infty} \frac{\arg X(t)}{L(\psi(t))}=\infty, \quad P_{x} \text {-a.s. }
$$

(ii) If $b(r)=r^{-\beta}, \beta \leqq 2$, then for any $0<\delta<1$,

$$
\lim _{t \rightarrow \infty} \frac{\arg X(t)}{L(\psi(t))^{2}\{\log L(\psi(t))\}^{-\delta}}=-\infty, \quad P_{x} \text {-a.s. }
$$

References

[1] G. de Rham: Variétés Différentiables. Hermann (1960).
[2] N. Ikeda and S. Manabe: Integral of differential forms along the path of diffusion processes (to appear).
[3] -: Stochastic integral of differential forms and its applications. Proc. Internat. Conf. on Stoch. Analysis (ed. by A. Friedman and M. Pinsky) Northwestern Univ., pp.175-185 (1978).
[4] H. P. McKean: Stochastic Integrals. Academic Press (1969).
[5] E. H. Spanier: Algebraic Topology. McGraw-Hill (1966).
[6] H. Watanabe: Potential operator of a recurrent strong Feller process in the strict sense and boundary value problem. J. Math. Soc. Japan, 16, 83-95 (1964).

