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1. Let X) be a bounded domain in R with smooth boundary r.
Let p(x) be a smooth function on r and be the exterior unit normal
vector at x e r. For sufficiently small >0, let 9, be the bounded
domain whose boundary r, is defined by, {x+(x); x e }.

Let G(x, y) be the Green’s function of the Dirichlet boundary value
problem o the Laplacian on 9,. We abbreviate Go(x, y) as G(x, y). Put

8G(x, y)=-G(x, y)1=o 2or k= 1, 2.

Put

’a(z). gb(z)=.] -o(z) (z) or any a(z), b(z) e C(f2).

By H(z) we denote the first mean curvature o r at z. Then,
Garabedian-Schiffer [1] proved the ollowing

82G(x, y)=

_
_x,_)__ G(y, z) (n- 1)H(z)p(z)da

(1.1)
2 8G(x, z). fiG(y, z)dz.
d

Here 3/3, denotes the exterior normal derivative with respect to z and
da denotes the surface element o2

Let U(x, y, t) denote the undamental solution of the heat equation
with the Dirichlet boundary condition on y,. Put

2or k= 1, 2. We abbreviate 3U(x, y, t) as 3U(x, y, t). In [2] and [3]
the author gve explicit representation of U(x, y, t), that is

We can prove the ollowing

Theorem 1. For x, y e g, tO
U(x, y, t)

=--f: d OU(x, z, t-) OU(y, z, ) (n-1)H(z)o(z)d,
(1.3)
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+2fl dr 8(SU)(x, z, t-r) 8U(y, z, r) p(z)daz.

By (1.2) we have the following properties of 8U(x, y, t).

(1.4) 3U(x, y, t)=(3/3vv)U(x, y, t)p(y) y
|lim U(x, y, t)=O x, y e
kt-,+0

Hence the second term of the right hand side of (1.2) can be represented
by

2f0 dry, gzSU(x,z,t-r).gz6U(y,z,r)dz.

Let Tr(t; e) denote the trace of U(x, y, t) on/2 which is defined by

T(t )= U(x, x, t)dx.
J

Put 8Tr(t)--(3/)Tr(t e)I=o. We abbreviate Tr(t) as 3T(t).
Let g(t) and h(t) be unctions on.(0, c). If limt/0 t’(g(t) h(t))--0

for any p= 1, 2,..., then we write g(t)_h(t).
We can prove the following

Theorem 2. For any fixed tO, 8T(t) exists and satisfies

T(t)_f 8U(x, x, t)dx.
J

Here the integral

U(x, x, t)dx

means the improper integral in the following sense. Let {9}= be an
increasing family of subdomains of t such that for any ]=1,2, ....

is contained in + as a compact subset and such that [2 is diffeo-
morphic to and =19=9. Then

I U(x,x, )dx=lm I U(x,x, )dx.

2. Outline of proof. In this section, we give n outline of proof
of Theorem 1 and give a propos.ition concerning U(x, x, t) which is a
step to prove Theorem 2.

By the definition, we have

V(x y, t)I.=0,U(x, y, t)=
3

so we need an explicit representation of U,(x, y, t). Fix . And let
be smll real number, then there exists a function p,(, x) such that
can be represented uniquely as

where , is the exterior unit normal vector at x e y,. Define p,(x) by

p,(x) lim0 p,(, x). Then, we have

y, )=d U(x, z, -r) U,(y, z, )U,(.x J0 J, v v p(z)da,
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orx, yeg, tO. See [2].
We have the ollowing

Lemma 3 Let g(e, z)-- f(e, z q- zp(z),) be a function of
(, z) e {(-o, o) x },

then

r f(’ w)dao
(2.1)

f(O, z)(n-- 1)H(z)p(z) daz+ - =o

Put + ={x e y; p(x)O} and -=yy+. For sufficiently small e, we
put ={x+p(x), ;x e +} and 7 =,y. Then, we have

(Iod U(x,z,t--r) U(y,z,) )3
p(z)da =0

+

(2.2)

3U(x, z, t-r) 3U(y, z, r)p(z)da.
/

Here
On the other hand, for z e + we have

( OU(x, z t) 3U(x, z, t) )lime-

aU(x, z, t)(2.3) (aU)(z, z, t)+ .p(z).

To prove (2.2), we need the ollowing asymptotic expansion which
can be proved by using a priori estimates o Schauder. See [3].

A(z, D)(U(x, z, 8-- U(x, z, t))
(2.4)

(A(z,)U)(x z, t) + 0@)
where O(e9 can be taken to be uniform with respect to z e y+, t>0.
Here A(z, D) is an arbitrary fixed differential operator o order 1 with
*(9) coefficients. By (2.1) and (2.3), we have the explicit represen-
tation o the second term o the left hand side o (2.2), that is

21:dr I O(U)(x,z,t-r) OU(y,z,r)

(2.5)
r+ 3, ’

.p(z)da

--2 f’ d f U(x, z, t-r) U(y, z, r) (n-1)Hl(z)p(z)da.
J0 J

On
B(z, D)(U(, z,,

(2.6)
--(B(z, D)U,)@, z,, t)+O@),

for an arbitrary fixed differential operator B(z,D) of order 1 with
C(R9 eoeffieients. Here 0@) can be taken to be uniform with respect



230 S. OZAWA [Vol. 55 (A),

to z e - and t0. Therefore, we get the explicit representation of

{I:drI U(x,z,t--r) U(y,z,r)p(z)da}
Summing up these acts, we have Theorem 1.

It should be remarked that our proo of Theorem I is different rom
the proof o (1.1) given by Garabedian-Schiffer. Their proof depends
on the interior variational method. See [1]. Our proof is a develop-
ment of the original idea o Hadamard by which he studied Hada-
mard’s variational ormula.

Proof o Theorem 2 is long, so we will only give a proposition
which is important by itself. Details of proof of Theorems 1 and 2 will
be given elsewhere.

Proposition 4. For a fixed t>O, there exists positive constant
C, for/ e (0, 1) such that

}U(x, x, t)}_ C,(dist (x, .))"
holds.
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