53. Perturbation of Domains and Green Kernels of Heat Equations. III

By Shin Ozawa
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)
$\S 1$. Let Ω be a bounded domain in R^{n} with smooth boundary γ. Let $\rho(x)$ be a smooth function on γ and ν_{x} be the exterior unit normal vector at $x \in \gamma$. For sufficiently small $\varepsilon \geq 0$, let $\Omega_{\text {。 }}$ be the bounded domain whose boundary γ_{c} is defined by

$$
\gamma_{\mathrm{s}}=\left\{x+\varepsilon \rho(x) \nu_{x} ; x \in \gamma\right\} .
$$

Let $G_{\epsilon}(x, y)$ be the Green's function of the Dirichlet boundary value problem of the Laplacian on Ω_{c}. We abbreviate $G_{0}(x, y)$ as $G(x, y)$. Put

$$
\delta^{k} G(x, y)=\left.\frac{\partial^{k}}{\partial \varepsilon^{k}} G_{s}(x, y)\right|_{s=0} \quad \text { for } k=1,2
$$

Put

$$
\nabla_{z} a(z) \cdot \nabla_{z} b(z)=\sum_{j=1}^{n} \frac{\partial a}{\partial z_{j}}(z) \frac{\partial b}{\partial z_{j}}(z) \quad \text { for any } a(z), b(z) \in \mathcal{C}^{\infty}(\Omega)
$$

By $H_{1}(z)$ we denote the first mean curvature of γ at z. Then, Garabedian-Schiffer [1] proved the following :

$$
\begin{align*}
\delta^{2} G(x, y)= & -\int_{r} \frac{\partial G(x, z)}{\partial \nu_{z}} \frac{\partial G(y, z)}{\partial \nu_{z}}(n-1) H_{1}(z) \rho(z)^{2} d \sigma_{z} \\
& +2 \int_{\Omega} \nabla_{z} \delta^{1} G(x, z) \cdot \nabla_{z} \delta^{1} G(y, z) d z . \tag{1.1}
\end{align*}
$$

Here $\partial / \partial \nu_{z}$ denotes the exterior normal derivative with respect to z and $d \sigma_{z}$ denotes the surface element of γ.

Let $U_{0}(x, y, t)$ denote the fundamental solution of the heat equation with the Dirichlet boundary condition on γ_{s}. Put

$$
\delta^{k} U(x, y, t)=\left.\frac{\partial^{k}}{\partial \varepsilon^{k}} U_{\epsilon}(x, y, t)\right|_{s=0}
$$

for $k=1,2$. We abbreviate $\delta^{1} U(x, y, t)$ as $\delta U(x, y, t)$. In [2] and [3] the author gave explicit representation of $\delta U(x, y, t)$, that is

$$
\begin{equation*}
\delta U(x, y, t)=\int_{0}^{t} d \tau \int_{r} \frac{\partial U(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} \rho(z) d \sigma_{z} . \tag{1.2}
\end{equation*}
$$

We can prove the following
Theorem 1. For $x, y \in \Omega, t>0$

$$
\begin{align*}
& \delta^{2} U(x, y, t) \\
& \quad=-\int_{0}^{t} d \tau \int_{\gamma} \frac{\partial U(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}}(n-1) H_{1}(z) \rho(z)^{2} d \sigma_{z} \tag{1.3}
\end{align*}
$$

$$
+2 \int_{0}^{t} d \tau \int_{r} \frac{\partial(\delta U)(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} \rho(z) d \sigma_{z} .
$$

By (1.2) we have the following properties of $\delta U(x, y, t)$.

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta_{x}\right) \delta U(x, y, t)=0 \quad x, y \in \Omega, t>0 \tag{1.4}\\
\delta U(x, y, t)=\left(\partial / \partial \nu_{y}\right) U(x, y, t) \rho(y) \quad y \in \gamma, x \in \Omega, t>0 \\
\lim _{t \rightarrow+0} \delta U(x, y, t)=0 \quad x, y \in \Omega
\end{array}\right.
$$

Hence the second term of the right hand side of (1.2) can be represented by

$$
2 \int_{0}^{t} d \tau \int_{\Omega} \nabla_{z} \delta U(x, z, t-\tau) \cdot \nabla_{z} \delta U(y, z, \tau) d z
$$

Let $T_{r}(t ; \varepsilon)$ denote the trace of $U_{\epsilon}(x, y, t)$ on Ω_{s} which is defined by

$$
T_{r}(t ; \varepsilon)=\int_{\Omega_{e}} U_{\varepsilon}(x, x, t) d x
$$

Put $\delta^{k} T_{r}(t)=\left.\left(\partial^{k} / \partial \varepsilon^{k}\right) T_{r}(t ; \varepsilon)\right|_{\varepsilon=0}$. We abbreviate $\delta^{1} T_{r}(t)$ as $\delta T_{r}(t)$.
Let $g(t)$ and $h(t)$ be functions on $(0, \infty)$. If $\lim _{t \rightarrow+0} t^{p}(g(t)-h(t))=0$ for any $p=1,2, \cdots$, then we write $g(t) \simeq h(t)$.

We can prove the following
Theorem 2. For any fixed $t>0, \delta^{2} T_{r}(t)$ exists and satisfies

$$
\delta^{2} T_{r}(t) \simeq \int_{\Omega} \delta^{2} U(x, x, t) d x
$$

Here the integral

$$
\int_{\Omega} \delta^{2} U(x, x, t) d x
$$

means the improper integral in the following sense. Let $\left\{\Omega_{j}\right\}_{j=1}^{\infty}$ be an increasing family of subdomains of Ω such that for any $j=1,2, \cdots$. $\bar{\Omega}_{j}$ is contained in Ω_{j+1} as a compact subset and such that $\partial \Omega_{j}$ is diffeomorphic to γ and $\bigcup_{j=1}^{\infty} \Omega_{j}=\Omega$. Then

$$
\int_{\Omega} \delta^{2} U(x, x, t) d x=\lim _{j \rightarrow \infty} \int_{\Omega_{j}} \delta^{2} U(x, x, t) d x .
$$

§ 2. Outline of proof. In this section, we give an outline of proof of Theorem 1 and give a proposition concerning $\delta U(x, x, t)$ which is a step to prove Theorem 2.

By the definition, we have

$$
\delta^{2} U(x, y, t)=\left.\frac{\partial}{\partial \varepsilon} \delta U_{s}(x, y, t)\right|_{s=0}
$$

so we need an explicit representation of $\delta U_{\iota}(x, y, t)$. Fix ε. And let $\tilde{\varepsilon}$ be small real number, then there exists a function $\rho_{s}(\tilde{\varepsilon}, x)$ such that $\gamma_{c+\varepsilon}$ can be represented uniquely as

$$
\gamma_{c+\varepsilon}=\left\{x+\tilde{\varepsilon} \rho_{s}(\tilde{\varepsilon}, x) \nu_{x}^{e} ; x \in \gamma_{s}\right\}
$$

where ν_{x}^{e} is the exterior unit normal vector at $x \in \gamma_{s}$. Define $\rho_{s}(x)$ by $\rho_{t}(x)=\lim _{\varepsilon \rightarrow 0} \rho_{t}(\tilde{\varepsilon}, x)$. Then, we have

$$
\delta U_{s}(x, y, t)=\int_{0}^{t} d \tau \int_{r_{e}} \frac{\partial U_{\epsilon}(x, z, t-\tau)}{\partial \nu_{z}^{e}} \frac{\partial U_{\epsilon}(y, z, \tau)}{\partial \nu_{z}^{e}} \rho_{s}(z) d \sigma_{z}^{\epsilon},
$$

for $x, y \in \Omega, t>0$. See [2].
We have the following
Lemma 3. Let $g(\varepsilon, z)=f\left(\varepsilon, z+\varepsilon \rho(z) \nu_{z}\right)$ be a function of

$$
(\varepsilon, z) \in\left\{\left(-\varepsilon_{0}, \varepsilon_{0}\right) \times \gamma\right\}
$$

then

$$
\begin{align*}
& \frac{\partial}{\partial \varepsilon} \int_{r_{s}} f(\varepsilon, w) d \sigma_{w}^{\varepsilon} \\
& \quad=\int_{r} f(0, z)(n-1) H_{1}(z) \rho(z) d \sigma_{z}+\left.\int_{r} \frac{\partial g}{\partial \varepsilon}(\varepsilon, z)\right|_{s=0} d \sigma_{z} . \tag{2.1}
\end{align*}
$$

Put $\gamma^{+}=\{x \in \gamma ; \rho(x) \geq 0\}$ and $\gamma^{-}=\gamma \backslash \gamma^{+}$. For sufficiently small ε, we put $\gamma_{c}^{+}=\left\{x+\varepsilon \rho(x) \nu_{x} ; x \in \gamma^{+}\right\}$and $\gamma_{c}^{-}=\gamma_{c} \backslash \gamma_{c}^{+}$. Then, we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \varepsilon}\left(\int_{0}^{t} d \tau \int_{r_{\epsilon}^{+}} \frac{\partial U_{\epsilon}(x, z, t-\tau)}{\nu_{z}^{\epsilon}} \frac{\partial U_{\epsilon}(y, z, \tau)}{\partial \nu_{z}^{\epsilon}} \rho_{\epsilon}(z) d \sigma_{z}^{\epsilon}\right)\right|_{\epsilon=0} \\
& =\int_{0}^{t} d \tau \int_{r^{+}} \frac{\partial U(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}}(n-1) H_{1}(z) \rho(z)^{2} d \sigma_{z} \\
& +\int_{0}^{t} d \tau \int_{\tau^{+}} \lim _{\varepsilon \rightarrow+0} \varepsilon^{-1}\left(\frac{\partial U_{\epsilon}\left(x, z_{s}, t-\tau\right)}{\partial \nu_{z_{\epsilon}}^{\iota}} \frac{\partial U_{\sigma}\left(y, z_{c}, \tau\right)}{\partial \nu_{z_{s}}^{\iota}} \rho_{\mathrm{s}}\left(z_{\mathrm{s}}\right)\right. \\
& \left.-\frac{\partial U(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} \rho(z)\right) d \sigma_{z} .
\end{aligned}
$$

Here $z_{6}=z+\varepsilon \rho(z) \nu_{z}$.
On the other hand, for $z \in \gamma^{+}$we have

$$
\begin{align*}
& \lim _{\epsilon \rightarrow+0} \varepsilon^{-1}\left(\frac{\partial U_{\epsilon}\left(x, z_{\mathrm{s}}, t\right)}{\partial \nu_{z_{s}}^{\varepsilon}}-\frac{\partial U(x, z, t)}{\partial \nu_{z}}\right) \\
&=\frac{\partial(\partial U)(x, z, t)}{\partial \nu_{z}}+\frac{\partial^{2} U(x, z, t)}{\partial \nu_{z}^{2}} \rho(z) . \tag{2.3}
\end{align*}
$$

To prove (2.2), we need the following asymptotic expansion which can be proved by using a priori estimates of Schauder. See [3].

$$
\begin{align*}
& A(z, D)\left(U_{\Delta}(x, z, t)-U(x, z, t)\right) \tag{2.4}\\
& \quad=\varepsilon(A(z, D) \delta U)(x, z, t)+O\left(\varepsilon^{2}\right),
\end{align*}
$$

where $O\left(\varepsilon^{2}\right)$ can be taken to be uniform with respect to $z \in \gamma^{+}, t>0$. Here $A(z, D)$ is an arbitrary fixed differential operator of order 1 with $\mathcal{C}^{\infty}(\bar{\Omega})$ coefficients. By (2.1) and (2.3), we have the explicit representation of the second term of the left hand side of (2.2), that is

$$
\begin{align*}
& 2 \int_{0}^{t} d \tau \int_{\gamma^{+}} \frac{\partial(\delta U)(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} \rho(z) d \sigma_{z} \\
& \quad-2 \int_{0}^{t} d \tau \int_{\gamma^{+}} \frac{\partial U(x, z, t-\tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}}(n-1) H_{1}(z) \rho(z)^{2} d \sigma_{z} . \tag{2.5}
\end{align*}
$$

On γ^{-}part of the boundary, we have for $z \in \gamma^{-}$

$$
\begin{align*}
& B(z, D)\left(U\left(x, z_{s}, t\right)-U_{s}\left(x, z_{s}, t\right)\right) \tag{2.6}\\
& \quad=-\varepsilon\left(B(z, D) \delta U_{s}\right)\left(x, z_{s}, t\right)+O\left(\varepsilon^{2}\right),
\end{align*}
$$

for an arbitrary fixed differential operator $B(z, D)$ of order 1 with $\mathcal{C}^{\infty}\left(\mathrm{R}^{n}\right)$ coefficients. Here $O\left(\varepsilon^{2}\right)$ can be taken to be uniform with respect
to $z \in \gamma^{-}$and $t>0$. Therefore, we get the explicit representation of

$$
\frac{\partial}{\partial \varepsilon}\left\{\int_{0}^{t} d \tau \int_{r_{\varepsilon}^{-}} \frac{\partial U_{\epsilon}(x, z, t-\tau)}{\partial \nu_{z}^{\epsilon}} \frac{\partial U_{\theta}(y, z, \tau)}{\partial \nu_{z}^{\varepsilon}} \rho_{\epsilon}(z) d \sigma_{z}^{\varepsilon}\right\}_{\mid==0}
$$

Summing up these facts, we have Theorem 1.
It should be remarked that our proof of Theorem 1 is different from the proof of (1.1) given by Garabedian-Schiffer. Their proof depends on the interior variational method. See [1]. Our proof is a development of the original idea of Hadamard by which he studied Hadamard's variational formula.

Proof of Theorem 2 is long, so we will only give a proposition which is important by itself. Details of proof of Theorems 1 and 2 will be given elsewhere.

Proposition 4. For a fixed $t>0$, there exists positive constant C_{μ} for $\mu \in(0,1)$ such that

$$
|\delta U(x, x, t)| \leq C_{\mu}(\operatorname{dist}(x, \gamma))^{\mu}
$$

holds.

References

[1] P. R. Garabedian and M. Schiffer: Convexity of domain functionals. J. Anal. Math., 2, 281-368 (1952-53).
[2] S. Ozawa: Perturbation of domains and Green kernels of heat equations. Proc. Japan Acad., 54A, 322-325 (1978).
[3] -: Studies on Hadamard's variational formula. Master's Thesis, Univ. of Tokyo (1979) (in Japanese).

