50. Invariants of Reflection Groups in Positive Characteristics

By Haruhisa Nakajima
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., June 12, 1979)

Let k be a field of characteristic $p>0$. Let V be a vector space over the field k and $k[V]$ be the symmetric algebra of V. Let G be a finite subgroup of $G L(V)$ with $p \| G \mid$. Then G can be regarded as a subgroup of the automorphism group of $k[V]$. In [5], we classified irreducible groups G such that the invariant subrings $k[V]^{G}$ are polynomial rings under certain conditions. For a reflection group G, it is well known (e.g. [1]) that $k[V]^{G}$ is a unique factorization domain, but it has not been known whether $k[V]^{\epsilon}$ is a Macaulay ring. In this note we give some examples of reflection groups G such that $k[V]^{G}$ are not Macaulay rings.

Suppose that $p>2$ and that n is an integer with $p \mid n, n \geqq 5$. Let $E=\oplus_{i=1}^{n} k T_{i}, V=\oplus_{i=2}^{n} k\left(T_{i}-T_{1}\right)$ and $V^{\prime}=V / k \sum_{i=1}^{n} T_{i}$ be vector spaces over k. The symmetric group S_{n} acts on $\left\{T_{1}, \cdots, T_{n}\right\}$ as permutations. Then the k-spaces V and V^{\prime} are naturally regarded as S_{n}-faithful $k S_{n}$ modules. The group S_{n} is generated by reflections in $G L(V)$ and $G L\left(V^{\prime}\right)$ respectively. It is proved in [5] that $k[V]^{S_{n}}$ and $k\left[V^{\prime}\right]^{S_{n}}$ are not polynomial rings. The purpose of this note is to show the following stronger result:

Theorem. Suppose that $p \| n$ and $p \geqq 7$. Then $k[V]^{S_{n}}$ and $k\left[V^{\prime}\right]^{S_{n}}$ are not Macaulay rings.

Proof. Set $X_{i}=T_{i}-T_{1}(2 \leqq i \leqq n)$ and

$$
u=\left[\begin{array}{ccc}
1 & 1 & 1 \cdots \\
1 & 2 & 1 \cdots \\
1 & 1 & 2 \cdots 1 \\
& \cdots \cdots \\
1 & 1 & 1 \cdots
\end{array}\right] \in G L_{n-1}(k)
$$

Put ${ }^{t}\left[Y_{2}, \cdots, Y_{n}\right]=u^{t}\left[X_{2}, \cdots, X_{n}\right]$ and denote by $\bar{Y}_{i}(3 \leqq i \leqq n)$ the canonical images of Y_{i} in V^{\prime}. Let

$$
a={ }^{t}[1,2, \cdots, p-1,0,1, \cdots, p-1, \cdots, 0,1, \cdots, p-1] \in k^{n-1}
$$

and choose the element $\alpha^{\prime}={ }^{t}\left[a_{3}^{\prime}, \cdots, a_{n}^{\prime}\right] \in k^{n-2}$ such that $u a=\left[\begin{array}{c}0 \\ a^{\prime}\end{array}\right]$. Put

$$
\begin{aligned}
& W_{2}=X_{2}-1, W_{3}=X_{3}-2, \cdots, W_{p}=X_{p}-(p-1), W_{p+1}=X_{p+1}, \\
& W_{p+2}=X_{p+2}-1, \cdots, W_{2 p}=X_{2 p}-(p-1), \cdots, W_{n-p+1}=X_{n-p+1}, \\
& W_{n-p+2}=X_{n-p+2}-1, \cdots, W_{n}=X_{n}-(p-1) .
\end{aligned}
$$

Let M be the maximal ideal of $k[V]$ generated by the set $\left\{W_{2}, \cdots, W_{n}\right\}$
and let M^{\prime} be the maximal ideal of $k\left[V^{\prime}\right]$ generated by the set $\left\{\bar{Y}_{3}-a_{3}^{\prime}\right.$, $\left.\ldots, \bar{Y}_{n}-a_{n}^{\prime}\right\}$. We denote by H (resp. H^{\prime}) the decomposition group of S_{n} at M (resp. M^{\prime}) under the natural action of S_{n} on $k[V]$ (resp. $k\left[V^{\prime}\right]$). It is clear that $H^{\prime}=H$.

Set $m=n / p$ and

$$
\begin{aligned}
B= & T_{2}+2 T_{3}+\cdots+(p-1) T_{p}+T_{p+2}+2 T_{p+3}+\cdots+(p-1) T_{2 p}+\cdots \\
& +T_{(m-1) p+2}+2 T_{(m-1) p+3}+\cdots+(p-1) T_{n} .
\end{aligned}
$$

For $\sigma \in H$, there is an element d of F_{p} such that $B^{\sigma}=B+d Y_{2}$. Hence

$$
H=\left\{\sigma \in S_{n}: B^{\sigma}=B+d Y_{2} \text { for some } d \in \boldsymbol{F}_{p}\right\} .
$$

Let

$$
\Omega=\left\{(i, j) \in S_{n}: i \equiv j \bmod p, i \neq j\right\}
$$

and take the element $\tau=(1,2, \cdots, n) \in S_{n}$. Then H is generated by the set $\Omega \cup\{\tau\}$ and the group $J=\langle\Omega\rangle$ is a normal subgroup of H. We see that $H / J=\langle\tau J\rangle$ is a cyclic group of order p. Obviously $J=S_{m} \times \cdots$ $\times S_{m}$ (p times). We denote by F the stabilizer subgroup of J at the set $\left\{X_{p+1}, X_{2 p+1}, \cdots, X_{(m-1) p+1}\right\}$ under the natural action of J on V (i.e. the group J acts trivially on this set). Then $F \cong S_{m} \times \cdots \times S_{m}$ ($p-1$ times) and F is a normal subgroup of J.

Let $U_{i}\left(Z_{1}, \cdots, Z_{m}\right)$ be the fundamental symmetric polynomial of degree i with variables Z_{1}, \cdots, Z_{m} and put

$$
U_{i}^{(j)}=U_{i}\left(X_{j}, X_{p+j}, \cdots, X_{(m-1) p+j}\right) \quad(1 \leqq i \leqq m ; 2 \leqq j \leqq p) .
$$

Then we have $k[V]^{F}=A\left[U_{1}^{(2)}, \cdots, U_{m}^{(2)}, \cdots, U_{1}^{(p)}, \cdots, U_{m}^{(p)}\right]$ where A $=k\left[X_{p+1}, X_{2 p+1}, \cdots, X_{(m-1) p+1}\right]$. Since $(p, m)=1$, we can set

$$
V_{i}^{(j)}=\frac{1}{m} \sum_{r=0}^{m-1} U_{i}\left(T_{j}-T_{p r+1}, T_{p+j}-T_{p r+1}, \cdots, T_{(m-1) p+j}-T_{p r+1}\right)
$$

$(1 \leqq i \leqq m ; 2 \leqq j \leqq p)$. Regard $V_{i}^{(j)}$ as a polynomial with variables $\left\{X_{p+1}\right.$, $\left.X_{2 p+1}, \cdots, X_{(m-1) p+1}\right\}$, then it follows that

$$
V_{i}^{(j)}-U_{i}^{(j)} \in A\left[U_{1}^{(j)}, \cdots, U_{i-1}^{(j)}\right] .
$$

Hence $k[V]^{F}=A\left[V_{1}^{(2)}, \cdots, V_{m}^{(2)}, \cdots, V_{1}^{(p)}, \cdots, V_{m}^{(p)}\right]$. Since $V_{i}^{(j)}(1 \leqq i \leqq m$; $2 \leqq j \leqq p$) are contained in $k[V]^{J}$, we have

$$
k[V]^{J}=A^{J / F}\left[V_{1}^{(2)}, \cdots, V_{m}^{(2)}, \cdots, V_{1}^{(p)}, \cdots, V_{m}^{(p)}\right]
$$

We identify J / F with S_{m}. Then S_{m} acts faithfully on the vector space $Q=\sum_{r=1}^{m-1} k X_{r p+1}$. Since all transpositions of S_{m} are represented by reflections in $G L(Q)$ and (m, p) =1, the module Q is $k S_{m}$-isomorphic to $D / D^{S_{m}}$, where D is the canonical representation of S_{m} of degree m. Hence we have the canonical epimorphism $\varphi: k[D] \rightarrow k[Q]$ which is compatible with the action of S_{m}. Clearly $k[D]$ is a free $k[D]^{s_{m}}$-module and so we know that $k[Q]$ is a free $k[Q]^{s_{m}}$-module by the use of the epimorphism φ. Consequently $k[Q]^{S_{m}}$ and $A^{J / F}$ are polynomial rings.

Put $\bar{\tau}=\tau J$ and $L_{i}=(\bar{\tau}-1) V_{1}^{(i+1)}(1 \leqq i \leqq p-2)$. Let I (resp. P) be the ideal of $k[V]^{J}$ generated by the set $(\bar{\tau}-1) k[V]^{J}$ (resp. the set $\left\{L_{i}: 1 \leqq i\right.$ $\leqq p-2\}) . \quad k[V]^{J}$ is a graded polynomial subalgebra of $k[V]$. Hence
P is a prime ideal of $k[V]^{J}$. Since $L_{1}=V_{1}^{(3)}-2 V_{1}^{(2)}, L_{2}=V_{1}^{(4)}-V_{1}^{(3)}-V_{1}^{(2)}$, $\cdots, L_{p-2}=V_{1}^{(p)}-V_{1}^{(p-1)}-V_{1}^{(2)}$ are linearly independent over k, we have $h t(P)>2$ and $\operatorname{dim}\left(k[V]^{J} / I\right)<n-3$. Let N be the homogeneous maximal ideal of $k[V]^{J}$ and put $R=\left(k[V]^{J}\right)_{N}$. Then we obtain depth $R^{\langle\xi\rangle}$ $\leqq \operatorname{dim} R / I R+2<n-1$, by Theorem 3 of [2]. Therefore $k[V]^{H}$ is not a Macaulay ring. If we regard $k[V]=k\left[W_{2}, \cdots, W_{n}\right]$ as a graded polynomial algebra by $\operatorname{deg}\left(W_{i}\right)=1(2 \leqq i \leqq n), k[V]^{H}$ is a noetherian graded subalgebra of $k\left[W_{2}, \cdots, W_{n}\right]$. By Proposition 4.10 of $[4],\left(k[V]^{H}\right)_{M \cap k[V]^{H}}$ is not a Macaulay ring. Since the local homomorphism

$$
\left(k[V]^{S_{n}}\right)_{M \cap k[V]_{n} S_{n}} \rightarrow\left(k[V]^{H}\right)_{M \cap k[V]^{H}}
$$

is étale, $\left(k[V]^{S_{n}}\right)_{M \cap k[V]_{n} s_{n}}$ is not a Macaulay ring. We conclude that $k[V]^{S_{n}}$ is not a Macaulay ring.

Clearly $k[V]^{J} / Y_{2} k[V]^{J}$ is a polynomial ring. Because the rings $k[V]^{J} / Y_{2} k[V]^{J}$ and $\left(k[V] / Y_{2} k[V]\right)^{J}$ have the common quotient field, we get the canonical isomorphism $k[V]^{J} / Y_{2} k[V]^{J} \leftrightarrows k\left[V^{\prime}\right]^{J}$ which is compatible with the action of H / J. Let I^{\prime} be the ideal of $k\left[V^{\prime}\right]^{J}$ generated by the set $(\bar{\tau}-1) k\left[V^{\prime}\right]^{J}$ and let P^{\prime} be the ideal of $k\left[V^{\prime}\right]^{J}$ generated by the set $\left\{\bar{L}_{i}: 1 \leqq i \leqq p-2\right\}$, where $\bar{L}_{i}(1 \leqq i \leqq p-2)$ are the canonical images of L_{i} in $k[V]^{J} / Y_{2} k[V]^{J}$. Since P^{\prime} is a prime ideal and $h t\left(P^{\prime}\right) \geqq h t(P)-1$, we have $\operatorname{dim}\left(k\left[V^{\prime}\right]^{J} / I^{\prime}\right)<n-2-2$. Therefore it follows that $k\left[V^{\prime}\right]^{S_{n}}$ is not a Macaulay ring.

Remark. The modules V and V^{\prime} are naturally regarded as $k A_{n^{-}}$ modules. By Proposition 13 of [3], $k[V]^{A_{n}}$ and $k\left[V^{\prime}\right]^{4_{n}}$ are not Macaulay rings under the assumption of our theorem.

References

[1] A. Dress: On finite groups generated by pseudo-reflections. J. Algebra, 11, 1-5 (1969).
[2] G. Ellingsrud and T. Skjelbred: Profondeur d'anneaux d'invariants en caractéristique p. C. R. Acad. Sci. Paris, 286, 321-322 (1978).
[3] M. Hochster and J. Eagon: Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci. Amer. J. Math., 93, 10201058 (1971).
[4] M. Hochster and L. J. Ratliff, Jr.: Five theorems on Macaulay rings. Pacific J. Math., 44, 147-172 (1973).
[5] H. Nakajima: Invariants of finite groups generated by pseudo-reflections in positive characteristic (to appear).

