50. Invariants of Reflection Groups in Positive Characteristics

By Haruhisa NAKAJIMA

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1979)

Let k be a field of characteristic p>0. Let V be a vector space over the field k and k[V] be the symmetric algebra of V. Let G be a finite subgroup of GL(V) with p||G|. Then G can be regarded as a subgroup of the automorphism group of k[V]. In [5], we classified irreducible groups G such that the invariant subrings $k[V]^{a}$ are polynomial rings under certain conditions. For a reflection group G, it is well known (e.g. [1]) that $k[V]^{a}$ is a unique factorization domain, but it has not been known whether $k[V]^{a}$ is a Macaulay ring. In this note we give some examples of reflection groups G such that $k[V]^{a}$ are not Macaulay rings.

Suppose that p>2 and that n is an integer with $p|n, n\geq 5$. Let $E=\bigoplus_{i=1}^{n} kT_i, V=\bigoplus_{i=2}^{n} k(T_i-T_i)$ and $V'=V/k\sum_{i=1}^{n} T_i$ be vector spaces over k. The symmetric group S_n acts on $\{T_1, \dots, T_n\}$ as permutations. Then the k-spaces V and V' are naturally regarded as S_n -faithful kS_n -modules. The group S_n is generated by reflections in GL(V) and GL(V') respectively. It is proved in [5] that $k[V]^{S_n}$ and $k[V']^{S_n}$ are not polynomial rings. The purpose of this note is to show the following stronger result:

Theorem. Suppose that $p \parallel n$ and $p \geq 7$. Then $k[V]^{s_n}$ and $k[V']^{s_n}$ are not Macaulay rings.

Proof. Set $X_i = T_i - T_1$ $(2 \le i \le n)$ and $u = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 1 \\ 1 & 1 & 2 & \cdots & 1 \\ & \ddots & \ddots & & \\ 1 & 1 & 1 & \cdots & 2 \end{bmatrix} \in GL_{n-1}(k).$

Put $[Y_2, \dots, Y_n] = u^i[X_2, \dots, X_n]$ and denote by \overline{Y}_i $(3 \le i \le n)$ the canonical images of Y_i in V'. Let

 $a = {}^{t}[1, 2, \dots, p-1, 0, 1, \dots, p-1, \dots, 0, 1, \dots, p-1] \in k^{n-1}$ and choose the element $a' = {}^{t}[a'_{3}, \dots, a'_{n}] \in k^{n-2}$ such that $ua = \begin{bmatrix} 0\\a' \end{bmatrix}$. Put $W_{2} = X_{2} - 1, W_{3} = X_{3} - 2, \dots, W_{p} = X_{p} - (p-1), W_{p+1} = X_{p+1},$ $W_{p+2} = X_{p+2} - 1, \dots, W_{2p} = X_{2p} - (p-1), \dots, W_{n-p+1} = X_{n-p+1},$ $W_{n-p+2} = X_{n-p+2} - 1, \dots, W_{n} = X_{n} - (p-1).$

Let *M* be the maximal ideal of k[V] generated by the set $\{W_2, \dots, W_n\}$

H. NAKAJIMA

and let M' be the maximal ideal of k[V'] generated by the set $\{\overline{Y}_s - a'_s, \dots, \overline{Y}_n - a'_n\}$. We denote by H (resp. H') the decomposition group of S_n at M (resp. M') under the natural action of S_n on k[V] (resp. k[V']). It is clear that H' = H.

Set
$$m=n/p$$
 and
 $B=T_2+2T_3+\cdots+(p-1)T_p+T_{p+2}+2T_{p+3}+\cdots+(p-1)T_{2p}+\cdots$
 $+T_{(m-1)p+2}+2T_{(m-1)p+3}+\cdots+(p-1)T_n.$

For $\sigma \in H$, there is an element d of F_p such that $B^{\sigma} = B + dY_2$. Hence $H = \{\sigma \in S_n : B^{\sigma} = B + dY_2 \text{ for some } d \in F_p\}.$

Let

$$\Omega = \{(i, j) \in S_n : i \equiv j \text{ mod } p, i \neq j\}$$

and take the element $\tau = (1, 2, \dots, n) \in S_n$. Then H is generated by the set $\Omega \cup \{\tau\}$ and the group $J = \langle \Omega \rangle$ is a normal subgroup of H. We see that $H/J = \langle \tau J \rangle$ is a cyclic group of order p. Obviously $J = S_m \times \dots \times S_m$ (p times). We denote by F the stabilizer subgroup of J at the set $\{X_{p+1}, X_{2p+1}, \dots, X_{(m-1)p+1}\}$ under the natural action of J on V (i.e. the group J acts trivially on this set). Then $F \cong S_m \times \dots \times S_m$ (p-1 times) and F is a normal subgroup of J.

Let $U_i(Z_1, \dots, Z_m)$ be the fundamental symmetric polynomial of degree *i* with variables Z_1, \dots, Z_m and put

 $U_{i}^{(j)} = U_{i}(X_{j}, X_{p+j}, \dots, X_{(m-1)p+j}) \qquad (1 \le i \le m; 2 \le j \le p).$ Then we have $k[V]^{F} = A[U_{1}^{(2)}, \dots, U_{m}^{(2)}, \dots, U_{1}^{(p)}, \dots, U_{m}^{(p)}]$ where $A = k[X_{p+1}, X_{2p+1}, \dots, X_{(m-1)p+1}].$ Since (p, m) = 1, we can set

$$V_{i}^{(j)} = \frac{1}{m} \sum_{r=0}^{m-1} U_{i}(T_{j} - T_{pr+1}, T_{p+j} - T_{pr+1}, \cdots, T_{(m-1)p+j} - T_{pr+1})$$

 $(1 \leq i \leq m; 2 \leq j \leq p)$. Regard $V_i^{(j)}$ as a polynomial with variables $\{X_{p+1}, X_{2p+1}, \dots, X_{(m-1)p+1}\}$, then it follows that

$$V_i^{(j)} - U_i^{(j)} \in A[U_1^{(j)}, \dots, U_{i-1}^{(j)}].$$

Hence $k[V]^{F} = A[V_{1}^{(2)}, \dots, V_{m}^{(2)}, \dots, V_{1}^{(p)}, \dots, V_{m}^{(p)}]$. Since $V_{i}^{(j)}$ $(1 \le i \le m; 2 \le j \le p)$ are contained in $k[V]^{J}$, we have

$$k[V]^{J} = A^{J/F}[V_{1}^{(2)}, \dots, V_{m}^{(2)}, \dots, V_{1}^{(p)}, \dots, V_{m}^{(p)}].$$

We identify J/F with S_m . Then S_m acts faithfully on the vector space $Q = \sum_{r=1}^{m-1} kX_{rp+1}$. Since all transpositions of S_m are represented by reflections in GL(Q) and (m, p) = 1, the module Q is kS_m -isomorphic to D/D^{S_m} , where D is the canonical representation of S_m of degree m. Hence we have the canonical epimorphism $\varphi : k[D] \rightarrow k[Q]$ which is compatible with the action of S_m . Clearly k[D] is a free $k[D]^{S_m}$ -module and so we know that k[Q] is a free $k[Q]^{S_m}$ -module by the use of the epimorphism φ . Consequently $k[Q]^{S_m}$ and $A^{J/F}$ are polynomial rings.

Put $\bar{\tau} = \tau J$ and $L_i = (\bar{\tau} - 1)V_1^{(i+1)}$ $(1 \leq i \leq p-2)$. Let I (resp. P) be the ideal of $k[V]^J$ generated by the set $(\bar{\tau} - 1)k[V]^J$ (resp. the set $\{L_i: 1 \leq i \leq p-2\}$). $k[V]^J$ is a graded polynomial subalgebra of k[V]. Hence

P is a prime ideal of $k[V]^J$. Since $L_1 = V_1^{(8)} - 2V_1^{(2)}$, $L_2 = V_1^{(4)} - V_1^{(8)} - V_1^{(2)}$, \cdots , $L_{p-2} = V_1^{(p)} - V_1^{(p-1)} - V_1^{(2)}$ are linearly independent over k, we have ht(P) > 2 and dim $(k[V]^J/I) < n-3$. Let N be the homogeneous maximal ideal of $k[V]^J$ and put $R = (k[V]^J)_N$. Then we obtain depth $R^{(r)} \leq \dim R/IR + 2 < n-1$, by Theorem 3 of [2]. Therefore $k[V]^H$ is not a Macaulay ring. If we regard $k[V] = k[W_2, \cdots, W_n]$ as a graded polynomial algebra by $deg(W_i) = 1$ $(2 \le i \le n)$, $k[V]^H$ is a noetherian graded subalgebra of $k[W_2, \cdots, W_n]$. By Proposition 4.10 of [4], $(k[V]^H)_{M \cap k[V]^H}$ is not a Macaulay ring. Since the local homomorphism

$$(k[V]^{s_n})_{M \cap k[V]^{s_n}} \rightarrow (k[V]^H)_{M \cap k[V]^H}$$

is étale, $(k[V]^{s_n})_{M \cap k[V]^{s_n}}$ is not a Macaulay ring. We conclude that $k[V]^{s_n}$ is not a Macaulay ring.

Clearly $k[V]^J/Y_2k[V]^J$ is a polynomial ring. Because the rings $k[V]^J/Y_2k[V]^J$ and $(k[V]/Y_2k[V])^J$ have the common quotient field, we get the canonical isomorphism $k[V]^J/Y_2k[V]^J \Rightarrow k[V']^J$ which is compatible with the action of H/J. Let I' be the ideal of $k[V']^J$ generated by the set $(\bar{\tau}-1)k[V']^J$ and let P' be the ideal of $k[V']^J$ generated by the set $\{\bar{L}_i: 1 \leq i \leq p-2\}$, where $\bar{L}_i (1 \leq i \leq p-2)$ are the canonical images of L_i in $k[V]^J/Y_2k[V]^J$. Since P' is a prime ideal and $ht(P') \geq ht(P) - 1$, we have $\dim(k[V']^J/I') < n-2-2$. Therefore it follows that $k[V']^{S_n}$ is not a Macaulay ring.

Remark. The modules V and V' are naturally regarded as kA_n -modules. By Proposition 13 of [3], $k[V]^{4_n}$ and $k[V']^{4_n}$ are not Macaulay rings under the assumption of our theorem.

References

- A. Dress: On finite groups generated by pseudo-reflections. J. Algebra, 11, 1-5 (1969).
- [2] G. Ellingsrud and T. Skjelbred: Profondeur d'anneaux d'invariants en caractéristique p. C. R. Acad. Sci. Paris, 286, 321-322 (1978).
- [3] M. Hochster and J. Eagon: Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci. Amer. J. Math., 93, 1020-1058 (1971).
- [4] M. Hochster and L. J. Ratliff, Jr.: Five theorems on Macaulay rings. Pacific J. Math., 44, 147-172 (1973).
- [5] H. Nakajima: Invariants of finite groups generated by pseudo-reflections in positive characteristic (to appear).