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Introduction. In this note, we show the main idea to prove the
existence of the global branch for spatial patterns of reaction-diffusion
system as follows
(1.1) 0=ux+f(u, v),

x e I (0, 1)

(1.2) 0=Iv+ g(u, v)

(1.3) u(0) =ux(1) v(0) v(1)---- 0,
where 1/a and fl are diffusion coefficients. Our principal assumptions
are

(A-l) (1) has a invariant rectangle R (see [1]).
(A-2) (1) has a unique positive constant solution (a, v)e R such

that Jacobi matrix of F at (, ) is. stable, i.e., real parts of its eigen-
values are negative, where F (f(u, v), g(u, v)).

(A-3) 0-level curve of f is. sigmoidal and that of g intersects it
transversally (see [2, Figs.. 1-3]).

(A-4) a is fixed to be sufficiently small.
This type of system satisfying (A-1)-(A-4) appears, in many fields such
as population dynamics., morphogenesis and so on (see [3], [4]). Under
these assumptions, we can obtain the global result Theorem 3 for the
bifurcating branch from (, ) when fl varies as a bifurcation para-
meter. We note that Theorem 3 says not only the global existence of
the bifurcating branch but also its asymptotic behavior when fl tends
to zero.

Remark 1o We use the word "exist globally" in the sense that
the bifurcating branch in R/ (H(I))*) can be extendible for any
small fl, i.e., the fl-section of it or any small fl is not empty and con-
tains non-trivial solutions.

For the local bifurcation problem o (1), many works have been
done and tor the details, see, or instance, [5]. When fl leaves the
critical point, we have, in general, little informations about how the
bifurcating branch changes., however, if the above our assumptions
are satisfied, we can describe the global picture o the bifurcating

*) R+=(0, +o). H(I)=closure of (cos(nux)}% in the usual Sobolev space H(I).
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branch rather completely through the shadow system (3) in the ollow-
ing. Replacing u and v by u/ and v / for convenience (we use the
same notation (u, v) for new dependent variables), we can see that (1)
becomes
(2.1) O--flu+f(u, v)

(2.2) 0--lv+ (u, v),

where f(u, v)--f(u+, v q- ) and d(u, v) g(u+, v + ). When a is
sufficiently small, v must be nearly flat because of zero flux boundary
conditions and (A-l), so the limit of (2) (as a $ 0) becomes the following
system for the unknowns (u, )
(3.1) 0--flu -t-f(u, )

(3.2) O--.I: (u, )dx
subject to zero flux boundary conditions, where v=- is a constant
function. We call (3) the shadow system of (2).

The asymptotic analysis with respect to a (for fixed fl) was done
by Keener [6], but it didn’t treat the global branching problem. Sin-
gular perturbation analysis with respect to fl has been done by Mimura-
Hosono-Tabata [7] using File’s method [8], which plays an important
role in the following discussions. Some parts of the ollowing results
were stated in [2] and [9], and the extended paper including proofs
will be reported elsewhere.

Here we introduce some notations." . (or ) denotes the closure
of non-trivial solutions of (2) (or (3)) in R/ (H(I)), respectively,
which contains n-th bifurcation point from the trivial branch. (See
[2], [9].)

1. Existence of the global branch for the shadow system.
First we study the global properties o the shadow system (3), because
it inherits the essential features of (2) for small c, especially for /3
bounded away from zero, we get the following approximation lemma.

Lemma 1. For any positive and , there exists some positive
constant such that . belongs to the -nbd. of when both branches
are restricted to the space [fl, co) (H(I)) for any with 0=.

Under some technical assumptions, the problem o finding the
orm of is reduced to study the intersection of two surfaces in R,
which strongly depend on the nonlinearity F (see [9]). From (A-3)
and homotopy invariance of the degree, we can get

Theorem 1. Under the assumptions (A-1)-(A-4), C exists global-
ly with respect to ft.

Remark 2. The result of Theorem I is sufficient to guarantee the
global existence of the branch %

2. Singular perturbation solution and its local uniqueness.
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From Lemma 1 and Theorem 1, we can see that . does not fall into
the trivial branch for fl>. Then, how does . behave when fl is
near zero? The following result for small fl due to [7] is needed to
answer this problem. (See also [2].)

Theorem 2. Suppose that (A-1)-(A-4) hold. Then there exists
some positive constant flo such that the problem (1) has a family of
solutions (u(x a), v(.x )) for Oflo and as fl-+O, this family con-
verges to the solution of the reduced problem of (1). Moreover there
exists a positive constant 0=30(fl) and o such that (1) has no other
solution in a o-nbd. of (u(x a), v(x )) in the C2-topology for any
e (0, o) when fl e (0, rio) is fixed.
Remark 3. When e (0, 0) is fixed and a tends to zero, (u(x ;a),

(x; a)) converges to the solution of the shadow system.
3. Global branching theorem. Before going into the last stage,

we impose one more condition on the global branch of the shadow
system, which is satisfied by several important models.

(A-5) There exists some positive constant fl. such that Se% ()
consists of two elements or fl fl., where Se% (CD denotes the fl-section
of C.

Now we can show tha 2 coincides wih he singular perturbation
solutions for small p. More precisely, we have

Theorem 3 (Existence of he global branch and is asymptotic be-
havior as -0). Under the assumptions (A-1)-(A-5), C2 exists global-
ly with respect to fl and coincides with the singular perturbation solu-
tions in Theorem 2 when is sufficiently small.

Proof. First we take fl in Lemma 1 smaller than min {0,/.},
where fl0 and f12 are the constants which appeared in Theorem 2 and
(A-5), respectively. Then we take a sufficiently small such that for
some fixed fl with fl<<min {0, }, Se% (.) belongs to the interior
of the 0-nbd. of the singular perturbation solution (this is possible
because both Se% (2) and the singular perturbation solution converge
to the same solutions Se% () in (A-5) as a0). Local uniqueness
in Theorem 2 implies that Se% (2) must coincide with the singular
perturbation solution. This completes the proof.
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