30. A Theorem of Helson and Sarason in Uniform Algebras

By Yoshiki OHNO*) and Kôzô YABUTA**)

(Communicated by Kôsaku YOSIDA, M. J. A., April 12, 1979)

1. In this note we shall give an extension of a theorem of Helson and Sarason in their paper "Past and Future" to the case of uniform algebra with a unique representing measure. Let X be a compact Hausdorff space and A be a uniform algebra on X, that is a uniformly closed, point separating algebra of continuous, complex valued functions on X containing the constants. Assume, always from now on, that m is a complex homomorphism of A such that m has a unique representing measure dm on X. Define H^p as the closure of A in L^p (*dm*) (norm closure for $1 \leq p < \infty$; weak*-closure for $p = \infty$). We put $A_0 = \left\{ f \in A \left| \int f dm = 0 \right\} \text{ and } H_0^p = \left\{ f \in H^p \left| \int f dm = 0 \right\} (1 \leq p \leq \infty). \text{ We de-} \right\}$ note by A_0^n (resp. $(H_0^{\infty})^n$) the ideal generated by products of n elements in A_0 (resp. H_0^{∞}). H_0^{∞} is said to be simply invariant if $[A_0H_0^{\infty}]_* \subseteq H_0^{\infty}$, where $[B]_*$ denotes the weak*-closure of B. Let G(m) be the Gleason part of m, that is, G(m) is the set of all complex homomorphisms σ of A such that the operator norm of $\sigma - m$ is strictly smaller than 2. In our situation the following conditions are equivalent:

(i) H_0^{∞} is simply invariant.

(ii) There exists an inner function Z such that $H_0^{\infty} = ZH^{\infty}$ (this function is determined uniquely up to multiplication of constants of modulus 1 and is called "Wermer's embedding function").

(iii) $G(m) \neq \{m\}$.

Now let ν be a positive finite Baire measure on X. We denote $\rho_n(\nu)$ by

$$\rho_n(\nu) = \sup \left| \int f g d\nu \right|$$

where f and g range over the elements of A and A_0^n , respectively, subject to the restriction

 $\int |f|^2 d
u \leq 1$ and $\int |g|^2 d
u \leq 1$.

Clearly $1 \ge \rho_1(\nu) \ge \rho_2(\nu) \ge \cdots \ge 0$.

Our result is the following

Theorem. (A) In the case $G(m) = \{m\}$, $\lim_{n \to \infty} \rho_n(\nu) = 0$ if and only

^{*)} College of General Education, Tohoku University.

^{**)} Kyoto Technical University.

A Theorem in Uniform Algebras

if $d\nu = cdm$ for some constant c.

(B) In the case $G(m) \neq \{m\}$, $\lim_{n \to \infty} \rho_n(\nu) = 0$ if and only if $d\nu$ is of the form

 $d\nu = |P(Z)|^2 \exp(u(Z) + \tilde{v}(Z)) dm,$

where Z is the Wermer's embedding function, P is an analytic polynomial, u and v are real valued continuous functions on the unit circle T and \tilde{v} is the usual conjugate function of v.

We note first that using Forelli's lemma ([2], Lemma 7.3) one can easily show that if $\rho_n(\nu) < 1$, $d\nu$ is absolutely continuous with respect to dm, i.e., $d\nu = wdm$ for some $0 \le w \in L^1(dm)$. Furthermore, by Proposition 2 in Ohno [5], we have $\log w \in L^1(dm)$ and so w > 0 *m*-a.e. Hence, to prove Theorem we may assume that $d\nu$ has the above form.

Proof of (A). "If" part is clear. Next assume $\lim_{n\to\infty} \rho_n(\nu) = 0$. Since w > 0, it is easily shown that $H_0^{\infty} = [A_0^n]_*$ and $H_0^{\infty} \subset [A_0^n]_{wdm}$, n = 1, 2, ..., where $[E]_{wdm}$ denotes the $L^2(wdm)$ -closure of E. Suppose w is not a constant. Then, since $A + \overline{A}_0$ is weak*-dense in $L^{\infty}(dm)$, there exists an $f \in A_0$ with $\int fwdm \neq 0$. However $f \in A_0 \subset [A_0^n]_{wdm}$. Hence we have

$$ho_n(
u) \ge \left| \int 1 f w dm \right| / \left(\int w dm \int |f|^2 w dm \right)^{1/2} > 0,$$

which is a contradiction.

Proof of (B). By virtue of the following Lemmas 1, 2 and 3 one can prove (B) by translating the proofs of Theorems 3, 4, 5 in Helson-Sarason [3] and Theorem A in Sarason [7] word for word to our case, replacing the function $\chi = e^{i\theta}$ and the space C(T) of all continuous functions on the unit circle T by our Wermer's embedding function Z and $C(Z) = \{f(Z) | f \in C(T)\}$, respectively.

Lemma 1. For every Lebesgue measurable set E on the unit circle T we have $L(E) = m\{x; Z(x) \in E\}$, where L is the normalized Lebesgue measure on T ([10], Corollary 1).

Lemma 2. Let k be a positive integer. If $Z^k s \in H^{1/2}$ and $S \ge 0$, then S has the form

$$S = |P(Z)|^2$$

where P is an analytic polynomial on T of degree k.

Proof. Put g=S+1. Then $Z^kg \in H^{1/2}$ and

$$\infty > \int \log |Z^k g| \, dm = \int \log |g| \, dm \ge \int \log 1 dm > -\infty.$$

By Theorem 2 in Gamelin [1], it follows that there exist an inner function q in H^{∞} and an outer function P_1 in H^2 such that $Z^k g = q P_1^2$. By the same argument as in the proof of Theorem 6 in [5] we see that P_1 has the form

$$P_1 = b_0 + b_1 Z + \cdots + b_k Z^k.$$

No. 4]

 \mathbf{Put}

$$R(e^{i\theta}) = |b_0 + b_1 e^{i\theta} + \dots + b_k e^{ik\theta}|^2 - 1.$$

Since, $R(Z) = |P_1|^2 - 1 \ge 0$ *m*-a.e., we have by Lemma 1 $R(e^{i\theta}) \ge 0$ a.e. on *T*. Since $R(e^{i\theta})$ is a non-negative trigonometric polynomial of degree *k*, it has a representation $R(e^{i\theta}) = |P(e^{i\theta})|^2$ with an analytic polynomial *P* of degree *k*. It follows that

 $S = g - 1 = |P_1|^2 - 1 = R(Z) = |P(Z)|^2.$

Remark. This is an extension of abstract Neuwirth and Newmann's theorem in Yabuta [9].

Lemma 3. $H^{\infty} + C(Z)$ is closed in $L^{\infty}(dm)$.

One can prove this in a quite similar way to the proof of Theorems 1, 2 in Rudin [6].

2. Related results. By similar arguments one obtains the following propositions.

Proposition 1. Let $G(m) \neq \{m\}$. Then $\rho_n(\nu) = 0$ if and only if $d\nu$ has the form

$$d\nu = |P(Z)|^2 dm$$

where P is an analytic polynomial on T of degree less than n.

Proposition 2. Let $G(m) = \{m\}$. Then $\rho_n(\nu) < 1$ if and only if $d\nu$ has the form

$$d\nu = \exp(r + \tilde{s}) dm$$
,

where r is a real valued bounded function and \tilde{s} is the conjugate function of a real valued function s with bound strictly smaller than $\pi/2$.

Remark. Proposition 2 for the case $G(m) \neq \{m\}$ is treated in Ohno [5].

References

- [1] T. W. Gamelin: H^p spaces and extremal functions in H^1 . Trans. Amer. Math. Soc., **124**, 158-167 (1966).
- [2] —: Uniform Algebras. Prentice-Hall, Englewood Cliffs, New Jersey (1969).
- [3] H. Helson and D. Sarason: Past and Future. Math. Scand., 21, 5-16 (1967).
- [4] Y. Ohno: Remarks on Helson-Szegö problems. Tôhoku Math. J., 18, 54-59 (1966).
- [5] ——: Helson-Szegö-Sarason theorem for Dirichlet algebras. Tôhoku Math. J., 31, 71–79 (1979).
- [6] W. Rudin: Spaces of type $H^{\infty}+C$. Ann. Inst. Fourier, Grenoble, 25, 99–125 (1975).
- [7] D. Sarason: An addendum to "Past and Future". Math. Scan., 30, 62–64 (1972).
- [8] T. P. Srinivasan and J. Wang: Weak*-Dirichlet algebras. Function Algebras (Tulane, 1965), Scott Foresman, Chicago, pp. 216-249 (1966).
- [9] K. Yabuta: A note on extremum problems in abstract Hardy spaces. Arch. Math., 23, 54-57 (1972).

[10] K. Yabuta: On bounded functions in the abstract Hardy space theory. II. Tôhoku Math. J., 26, 513-533 (1974).