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(Communicated by KSsaku YOSIDA, M. $. A., April 12, 1979)

This is a continuation of our preceding work [1] [2] on the theory
of holonomic quantum fields in higher dimensional space-time. We
shll deal here with the part corresponding to the deformation theory
[3] [4] in the case of 2 space-time dimensions.

It has been pointed out previously [1] [5] that, in a most general
setting, a Clifford group element g which induces a given rotation T
is, specified (up to a constant fctor) by the following four operators
( 1 ) F++:Y(--E_)Y+:--TE_(E++TE_)-1

F+_-- Y_IE+Y_=E+(E+ + TE_)-IT
F_+: Y:I(--E_)Y+: --E_(E+ + TE_)-F__= Y:IE+Y_=(E+ +E_T)-IE+.

Moreover the vacuum expectation value <g(R)g-> [1] is also expressible
in terms of them (and the ones obtained by the replacement
Now we consider the specific case discussed in XII- 2 [2]; namely let
T be a rotation in the space of free wave functions, defined as the
multiplication by a matrix M($) on a spacelike hypersurface F. For
simplicity we let/={x=0}. Then the kernel functions F:,(x, x’) of
F,,, (, ’= _+) are analytically prolongable to the domain {x> 0, ’x’> 0,
xg:x’} (x=--ix, x’O=--ix’9 of the Euclidean space X:=R. The
resulting functions m:(+ x’) are fundamental solutions of the Euclid-
ean Dirac equation, and satisfy the boundary conditions.
( 2 ) F(+,,, x’) M()F%,($, x’)

FE(/ ’)=F_ (x, ’)M(’)-, , ’ e F.
In this sense they are solutions, to a generalized Riemann-Hilbert prob-
lem. The purpose of this note is to characterize them by means of
variational ormula of Hadamard’s type [6] [7].

In 1 we 2ormulate the Riemann-Hilbert problem or Euclidean
Dirac equations., and state existence and uniqueness 02 the solution,
assuming that M($) is close to 1. In 2 we give M()-preserving
variational ormulas for this solution w(x, x’) and its. boundary values
w(x, /), w(-, x’) and w(-, ]/), viewed as. 2unctionals o the boundary
F. We also calculate their second variations, and state the complete
integrability of the (first) variational equations. These equations,
along with the integro-differential equations, derived from the Euclidean
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covariance of w(x, x’), constitute natural generalizations of the extend-
ed holonomic system II-(12), (15) [3], (3.3.51)-(3.3.53) [4] in 2 dimen-
sional space. In a coming note we shall show that the latter (as. well
as its massless version) is understood as. a limiting case of our varia-
tional formulas..

The authors are grateful to Prof. M. Sato for kind encouragement
and helpful suggestions. They are also indebted to Prof. K. Aomoto
for showing them his, interesting paper [7] prior to publication.

1. Let D+ be a bounded domain of X=R with real analytic

boundary F. We set D-=X-D. Let M() be an NN real ana-
lytic matrix defined on F. Let further T" be r r matrices satisfying

’’+T---23 (/2,--1, ...,s), and set 7=,__,3. We consider the
following Riemann-Hilbert type problem for the Euclidean Dirae equa-
tion with positive mass. m" Find a matrix w(x, x’) of size rN satisfying
( 3 ) ( (--+m)w(x, x’)=(x--x’) (x, x’ e X-F)

(ii) Iw(x, x’)l=O(e-11) (]x]--oo, x’ fixed)
(iii) w(/, x’)=M()w(-, x’) ( e F, x’ e F).

Here w(, x’)= lim.+/- ,, w(x, x’), and M() signifies. I(R)M(). Analo-
gously we consider the "adjoint problem"
( 3 )’ ( )’ w(x, x’)(,+m)=3(x-x’) (x, x’ e X--/)

(ii)’ Iw(x, x’)l--O(e-Ix’l) (x fixed,
(iii)’ w(x, ’/)=w(x, ’-)M(’)- (x e F, ’ e F)

where

w(x, x’),= x, lim w(x, x’)., w(x, x’)r and w(x, ’)=
=I D

Theorem 1. Assume that max, e r IM()-INI is suliciently small.
Then the problems (3) and (3)’ admit unique solutions, which are in fact
identical.

We call this. solution the Green’s function for the Riemann-Hilbert
problem (3), (3)’.

Uniqueness of the solution is. easily seen by using the Green’s
formula. We sketch below the proof of existence. Let

1 / m \/:-i

-(-)S.(x)=(+m)Au(X), zi.u(X) --(--denote a fundamental solution of the Euclidean Dirac equation, i.e.
(-Z/+m)S,,(x)=(x). We seek for a solution of (3) in the form

( 4 ) w(x, x’) Suo(X- x’) +[ da()S(x-)n()u,(D.
d1"

Here da() denotes the surface element of F, ()=,= y,n,(), and
n()=(n(),..., n()) is the unit outer normal of F. Set

(Ef)()=+lim de(’)So(x-’)(’)f(’),

(/)()--()/(). Then conditions ()-(i)-(iii) hold if nd onlx if
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( 5 ) (E+ -+- ME_)ux,()= (M()- 1)SE,c(-- x’).
It is shown that (i) E 1-E is a pseudo differential operator of order
0 on F, (ii) E/ +ME_ 1-+- (M-- 1)E_ is a bounded, invertible operator
on L2(F da), and (iii) E/ +ME_ is elliptic. Therefore (5) has. a unique
solution, which is. real analytic on F. Problem (3)’ is treated similarly.

Remark. Analogous results hold for the massless case m=0.
This time we impose the growth condition O(1/Ixl-9 in place of (3)-
(ii), (3)’-(ii)’.

2. For a fixed F the variation of w(x, x’) as a functional o M is
given by

( 6 ) w(x, x’)=[ d()w(x, +)()M()w(-, x’).
1"

w(x, x’) is characterized by (6) and the initial condition w(x, x’; F, 1)
=S(x, x’).

Next we vary F while preserving M(#) in the sense of [2]. Nmely
given a vector field=p"(), we set F={"=+p() e F} and
=M@). We denote by w"(x, x’) the Green’s unction corresponding
to (F", M") and by Ow"(x, x’) its variation as a unctional o2 p. We
abbreviate w(x, x’) to 3w(x, x’).

Theorem 2.

( 7 ) 3w(x, x’)=; da() p"()w(x, +). (n,zT--nO,)M(#). w(#-, x’).
F /=1

For , ] F we denote by cTw(x, +), cw(-, x9 and w(-, ]+) the
variations, at p=0 of w"(x, /), w"(-, x’) and w"("-, "/), respectively,
as functionals of p. Then we have

Corollary 3.

( 8 ) c ’w(x, ]/)= da(5) , cp"()w(x, 5).(n,8--n3,)M(5).w(-, r;/)
P ,=1

+ F()w(x, +).

( 9 ) ’6w(-, x’) da() 6p"()w(-, +). (n,7- nO,)M(), w(-, x’)
1" I =1

+ x’).
l=l

(10) ’’w(-, /)=f da() p"()w(-, +).(n,--n3,)M().w(-, +)

+
/=1 ;=1

We notice that by using the Euclidean Dirac equation w(x, ]/),
w(-, x’), ,w(-, ]+) and w(-, +) are rewritten in the forms con-
taining only tangential derivatives. For example we have 3,w(-, +)

(,--n()()8 +mn,()())w(-, ]+).
The second variation of w"(x, x’) as a unctional of p is defined by
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(11) *2W"(X, X’)= da() (p"()*F;(x, x’;{)
F t=l

where F;(x, x’;) is given by

(12) (w"(x, x’)=f da() p"()F;(x, x’; ).
F p=l

We abbreviate w(x, x’) to 3w(x, x’). ’w(x, +), ’w(-, x’) and
’’w(-, +) are similarly defined.

We introduce the delta unction 3(, ) on F satisfying

da()($, )= 1.

Theorem 4.

F =1 F =1

{w(x, )(n,Z-,)i(). w(-, 0+)(nJ-)i(0). w(e-, x’)

+ w(x, 0+)(nj-3)M(0). w(O-, +)(n,Z--n,)M(). w(5-, x’)

+ w(x, O+)(n,Z- n,)M(O).(, ). w(O-, x’)
w(x, O+)(n,3--n.3,)M(6) Z(5, ) w(O-, x’)
w(x, o+)(nJ-)i(0).(, ). w(0-, x’)

+ w(x, O+)(nJ-)M(0)(g nZ)w(O-, x’). (, )}.

(14) ’w(x, +)=w(x,
F =1 F =1

+3w(x, +). (, )(v, )}.
(15) ’w(-, x’)=w(-, x’)+ da(:) p"(:)f da() p()

F =1 F =1

+w(-,
+w(-, x’). (, )(,

(16)
F =1 F =1

x {lw(-, 0+)(nZ-n)M(0). w(0-, V+)($,

+lw(C-,
+) (C, 0)(V,C)}.+,w(C, v

Here

A unctional differential equation of the orm
(l?) w(x, x’)= d() p,()F,(x, x’;)

F g=l

is said to be completely integrable
where F(x, x’; C, ) is given by
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(18)
F =1

In the course of proof of Theorem 4 we see that (7) is completely inte-
grable and that (8), (9) and (10) are also completely integrable in
similar sense. oreover he following systems of functional differ-
ential equations, (19) + (20) + (21) + (22) or (20) + (22) or (21) + (22), are
completely integrable.

(19) w(x, x’) da($) p’($)w(x, ). (n,g-- O,)M(). w(, x’).
F =1

(20) 3w(x,
F =i

+ 30"()" w(x, )(--n,n--mn,n).
=1

(21) 8wa(, x’) da() p"()w(, ) (n,-- nO,)M() w(, x’)
F =1

+
=1

+
=1

+ (). (o-,((+m,(e(w,(, .
he Nuelidean eovarianee of w(z, ’) and he variational formula

(7) implies the following inegro-differential equations.

() ow(z, ’)+o’w(, ’)

+ d()w(, *). (,-e0,)(D. w(-, z’) =0,

Here we have se r,=(1/)[r", ff]. Then specializing ’ to + we

obtain

(25) {(x,-,)a- (x-ga}w(x. +)+-[ w(x. ;/)]

+_f. da()w(x, +). {(n("-- ") n,(-(($,-- ")3-- (’-- 93,)}M(). w(-, +) O.

We my regard (8) and (25) as linear equations or the quantity

w(x, +), having w(-, +) as an unknown coefficient. On the other side

the latter is governed by the non-linear functional differential equations
(10). In this sense these are higher-dimensional analogues of the ex-

tended holonomic system II-(12), (15) and the deformation equations

II-(17) [3].
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