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27. Studies on Holonomic Quantum Fields. XIII

By Michio JIMBO and Tetsuji MiwA
Research Institute for Mathematical Sciences,
Kyoto University

(Communicated by Kosaku Yo0SIDA, M. J. A., April 12, 1979)

This is a continuation of our preceding work [1] [2] on the theory
of holonomic quantum fields in higher dimensional space-time. We
shall deal here with the part corresponding to the deformation theory
[31[4] in the case of 2 space-time dimensions.

It has been pointed out previously [1] [5] that, in a most general
setting, a Clifford group element g which induces a given rotation T
is specified (up to a constant factor) by the following four operators:
(1) F,,=Y(-E.)Y,=—TE_(E,+TE_)

F, =Y;'F.Y =FE . (E,+TE_)"'T

F__ =Y (-EJ)Y,=—FE (E,+TE.)!

F__=YE. Y =(FH,+E.T)'E,.
Moreover the vacuum expectation value {g®g~'> [1] is also expressible
in terms of them (and the ones obtained by the replacement T+—T"").
Now we consider the specific case discussed in XII-§ 2 [2]; namely let
T be a rotation in the space of free wave functions, defined as the
multiplication by a matrix M(¢) on a spacelike hypersurface I'. For
simplicity we let I"={2"=0}. Then the kernel functions F.(x, 2') of
F.,. (e, ¢’= =) are analytically prolongable to the domain {ex* >0, ¢’&"* >0,
x#2'} ("= —1x®, 2°= —1i2”*) of the Euclidean space X®°=R°’. The
resulting functions F™°(x, 2’) are fundamental solutions of the Euclid-
ean Dirac equation, and satisfy the boundary conditions

Fii(z, &)=F7(x, &)M(EN, & & el
In this sense they are solutions to a generalized Riemann-Hilbert prob-
lem. The purpose of this note is to characterize them by means of a
variational formula of Hadamard’s type [6] [7].

In §1 we formulate the Riemann-Hilbert problem for Euclidean
Dirac equations, and state existence and uniqueness of the solution,
assuming that M(¢) is close to 1. In §2 we give M(&)-preserving
variational formulas for this solution w(x, 2’) and its boundary values
w(®, n*), w(g, ') and w(¢&™, »*), viewed as functionals of the boundary
I'. We also calculate their second variations, and state the complete
integrability of the (first) variational equations. These equations,
along with the integro-differential equations derived from the Euclidean
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covariance of w(z, 2'), constitute natural generalizations of the extend-
ed holonomic system II-(12), (15) [3], (8.8.51)-(3.3.53) [4] in 2 dimen-
sional space. In a coming note we shall show that the latter (as well
as its massless version) is understood as a limiting case of our varia-
tional formulas.

The authors are grateful to Prof. M. Sato for kind encouragement
and helpful suggestions. They are also indebted to Prof. K. Aomoto
for showing them his interesting paper [7] prior to publication.

1. Let D* be a bounded domain of X®°=R* with real analytic
boundary I'. We set D-=X®c_D*, Let M(&) be an N XN real ana-
Iytic matrix defined on I. Let further y* be r X matrices satisfying
7Y +rr=20~ (g,v=1,---,8), and set §=>:_,7"9,. We consider the
following Riemann-Hilbert type problem for the Euclidean Dirac equa-
tion with positive mass m : Find a matrix w(z, ') of size rN satisfying
(3) (i) (—d,+mw(x, 2)=0(x—2x') (z, 2’ € XEue-T)

(ii) |w(x, 2)|=0(e~™=") (2|00, 2’ fixed)
(ii) w(Er, 2)=M@EwE, z) Cel, o' el).
Here w(¢*, ') =limy. 5, w(x, '), and M(¢) signifies 1,QM(&). Analo-
gously we consider the “adjoint problem”
(3Y (i)Y w@, a)d+m=8@—2a) (22 eX™—T)
(i) |w(x, 2)|=0(e ™)  (x fixed, |2'|>0)
(iil)” w(w, & )=wx, &IME)" (wel,&el)
where

w(x, )3 = Zs] “w(x, o )" and w(x,&*)= lim w(x,2).
=1 &

1
DE 3z~
Theorem 1. Assume that max,.,|M(§)—1y| is sufficiently small.
Then the problems (3) and (3) admit unique solutions, which are in fact
identical.
We call this solution the Green’s function for the Riemann-Hilbert
problem (3), (3)’.
Uniqueness of the solution is easily seen by using the Green’s
formula. We sketch below the proof of existence. Let
Suud@ =@+ M@, Aa@) = (5 ) Kssm 2,
27 \ 2r ||
denote a fundamental solution of the Euclidean Dirac equation, i.e.
(—3+m)Sg(2)=0%(x). We seek for a solution of (8) in the form

(4) (%, &) = ST — x'>+jr d0(8)S e — E)M(E)UAE).

Here do(¢) denotes the surface element of I', w(&)=>:_,r*n,(8), and
(&) =(n,(8), - - -, n,(&)) is the unit outer normal of I'. Set

(E.NE= + liigclqe L do(&)Sgu(x—ENM(EN F(E),
M f)&)=M()f(&). Then conditions (8)-(i)-(iii) hold if and only if
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(5) (B, +ME Yu(&)=(M(&)— DSk — ).
It is shown that (i) E, =1—E. is a pseudo differential operator of order
Oon /', (i) F,+ME_=1+(M—1E_ is a bounded, invertible operator
on LXI"; do), and (iii) E,+ME _ is elliptic. Therefore (5) has a unique
solution, which is real analytic on I'. Problem (8) is treated similarly.
Remark. Analogous results hold for the massless case m=0.
This time we impose the growth condition O(1/|x|*"") in place of (3)-
@i, (3)-@i).
2. For a fixed I the variation of w(x, 2') as a functional of M is
given by

(6) ow(z, x’)=L do(®w(z, £ )nEME)wE™, ).

w(zx, «') is characterized by (6) and the initial condition w(x, 2’; ", 1)
=SEuc(x} x/)-

Next we vary I" while preserving M(¢) in the sense of [2]. Namely
given a vector field >"¢_, p“(§)d, we set I'*={&° =&+ p(&) | & € I'} and M*(¢*)
=M(&). We denote by wr°(x, 2') the Green’s function corresponding
to (I'*, M?) and by ow*(x, 2’) its variation as a functional of p. We
abbreviate ow'(x, x’) to sw(x, x').

Theorem 2.

(1) owla,a)=| do(@ z 30"E)w(@, &) - (0,5 — md,)M(E) - w(g™, 7).

For &,7eI" we denote by d'w(x, *), 'ow(é~, ') and 'd'w(¢~, *) the
variations at p=0 of w*(x, »°*), w*(&*~, ') and w*(&*~, y°*), respectively,
as functionals of p. Then we have

Corollary 3.

(8) 3w, 1= do(© z 50(Qw(@, £)- (n,d — M) - wE™, 1)
+ 33 0@y, 7).

(9) ‘ow,@)=| do®) z 50 OW(E", C*)- (0,8 —md,)M(C) - w(C™, 2')
+ z S (©FWE", ).

0) "3/w", 1) = da(©) 3 207w, - (1,0 —n3 MO - w(E", 1)
+ 33 30 @0 7+ 33 30 (00 7).

We notice that by using the Euclidean Dirac equation d7w(z, *),
FwE, x), dwE™, ') and d;w(s™, »*) are rewritten in the forms con-
taining only tangential derivatives. For example we have diw(£-, 5*)
= (05— n,(E)n(§)d* +mn, (E)n(ENw(E™, ).

The second variation of w*(x, «’) as a functional of p is defined by
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an ocw(z, 2')= . de(©) Z_si 00" (QoF(x, 2" ; 0)
where F(x, 2’ ; {) is given by
(12) owe, )= do©) 330" OF e, a5 0.

We abbreviate &w(z,2) to Sw(x, ). &8 w(z,p*), 'dwE,2) and
‘0" w(&~, »*) are similarly defined.

We introduce the delta function 4(¢, ) on I" satisfying

j _ do(®a(e, P=1.
Theorem 4.

a9 Fw)=[ do® Z::;Bp”(C) f . ds(6) 3 3°0)

x {w(x, O(n,d — 1o )ME) - wE, 67) (1,8 —nd,) M) - w@, )
+w(®, 0*)(n,d —%d,)M(6) - w0, {H)(n,d —nd, M) - w(C, )
+w(x, 0*)(n,d —nd, M) - 3,6, 6)- w6, 2)

—w(z, 6°)(n,0,—n,0,)M6) 356, 6) - w(@, ')

—w(x, 6%)(n,d —nd,)M(6)- 3,6, 0) - w(@, x')

+w(z, 6 )mn,0)n,O)dM@6), nw(@)Iw(d~, )3, 6)

+w(®, 6%)@w—3"n)n(n,d—nd)M@)-w@, %8, 6)
+w(x, 6*)(n,d —nd,) M(O)w(nd, —n,d"Yw@", &) -8, 0)}.

1) 5w, 7)=Fwe, )+ da© z 50/ | da6) z 50°(6)
X {w(x, £*)(n,d — w0, M) - 3w, 7*)d(y, 6)
+w(z, 6%)(n,d —n0,)M(6)-3,w(6~, 5*)d(y, ©)
+a101w(zx, n*) - a(y, Oy, O)}.

15) FwE, 2)=ruwe, )+ [ do© 3000 j do(®) 3 00°0)
X {85sw (&, 6*)(n,d —nd,)M(6) - w(d~, )3, O

+alw(E, Ln,8 —1d, ) ME) - w&, x)3(E, 0)
+asw(&, )-8, (g, 6)}.
16) 6w, p)=0"wE, )+ ; do(©) fi 80"(©) J.r do(6) ; 5p*(60)
X {osw(&~, 6*)(n,d — %0, )M(6) - w6, (&, O
+asw(E™, L), d —nd )M Q) - w9+, 6)
+0505w(E™, n*)-8(&, 0B(E, )+ 058 w(E™, n*) - 8(8, 0)ay, O)
+05a5w(E™, %) - 8(, 6)d(y, O}
Here 9,,=06,—mn, >5_, n,0, denotes the tangential component of 3,, and 4,
= mel 770,z
A functional differential equation of the form

an swi@, #)=| do(©) 31 30 OF (@, 0/ 0)

is said to be completely integrable if F,(z,2';¢,0)=F,(z,2" ;0,0
where F,(x, 2 ; ¢, 6) is given by
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18) R, o' 0=| do(0) z 30X OF (&, &' 5 C, 6).

In the course of proof of Theorem 4 we see that (7) is completely inte-
grable and that (8),(9) and (10) are also completely integrable in a
similar sense. Moreover the following systems of functional differ-

ential equations, (19)+4(20)+(21)+(22) or (20)4(22) or (21)+(22), are
completely integrable.

19)  owe,#)=[ do@® 3, 00"@w.lw, - (n,d—md )ME) 04, ).

@) dwe, = do© 3 30 @iz, O (n,d—nd M@ w7
+ 300 0., @i 57— ).

@D o, @)= do©) 30w, 00,7 —m3 ) M@ wiC, @)
+ z 50"(&)- (35—, + mn,Ww(&, &)

@) owEn=[_ do© 3000w 00,0~ w3 ) MO -wC, )
+ z 30" () - w (&, D)@y — 57, () — min, ()3()

+ 3000 03— 1, On@ + mn mON0LE, 7).

The Euclidean covariance of w(x, /) and the variational formula
(7) implies the following integro-differential equations.
23) w(x, ©)+"w(x, x)

+[ do@w, - 0o —nd)M@ - w, ) =0,
LAT v T 1 737 / % ‘—z’ /,u____‘_'/v__l_ uy
24) (x o0+ o1 )w(x,x)—i—w(x,x)(a,x = )
+fr do(@w(, &N (n.E"—n,E)d —n(§"0,— £0,)}M (&) - w(§™, &) =0.
Here we have set y»=(1/2)[y*,7’]. Then specializing 2’ to »* we
obtain

25) (@ — )3 — (2 — )% w(z, )+ %w, w(@, )]

+ j  do(@w(a, &) (" —7)—m, & —1)3

—nw((&*—7M0,— (& — )3 }M(E) - w(~, n*)=0.

We may regard (8) and (25) as linear equations for the quantity
w(z, *), having w(£~, »*) as an unknown coefficient. On the other side
the latter is governed by the non-linear functional differential equations
(10). In this sense these are higher-dimensional analogues of the ex-
tended holonomic system II-(12), (15) and the deformation equations
I1-(17) [3].
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