26. The Hodge Conjecture and the Tate Conjecture for Fermat Varieties

By Tetsuji Shioda
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1979)

Throughout the paper, $X_{m}^{n}(p)$ will denote the Fermat variety of dimension n and of degree m in characteristic p ($p=0$ or a prime number not dividing m), defined by the equation

(1)
 $$
x_{0}^{m}+x_{1}^{m}+\cdots+x_{n+1}^{m}=0 .
$$

The purpose of this note is to report our results on the Hodge Conjecture for $X_{m}^{n}(0)$ and the Tate Conjecture for $X_{m}^{n}(p), p>0$. By means of the inductive structure of $X_{m}^{n}(p)$ with respect to n ($[3, \S 1]$), we can reduce the proof of these conjectures to the verification of certain purely arithmetic conditions on m, n and p. After formulating the condition in $\S 1$, we state the main results in $\S \S 2$ and 3 . We give the brief sketch of the proof in $\S 4$.

Detailed accounts will be published elsewhere.
\S 1. The arithmetic condition. Fix $m>1$, and let H be a cyclic subgroup of order f of $(\boldsymbol{Z} / m)^{\times}$. We consider the following system of linear Diophantine equations in x_{1}, \cdots, x_{m-1} and y

$$
\begin{equation*}
\sum_{\nu=1}^{m-1} \sum_{u \in H}\langle t u \nu\rangle x_{\nu}=f m y \quad \text { for all } t \in(\boldsymbol{Z} / m)^{\times} \tag{2}
\end{equation*}
$$

where, for $a \in \boldsymbol{Z} / m-\{0\},\langle a\rangle$ denotes the representative of a between 1 and $m-1$. Let $M_{m}(H)$ denote the additive semigroup of non-negative integer solutions ($x_{1}, \cdots, x_{m-1} ; y$) of (2) satisfying moreover the following congruence:

$$
\begin{equation*}
\sum_{\nu=1}^{m-1} \nu x_{\nu} \equiv 0 \quad(\bmod m) . \tag{3}
\end{equation*}
$$

For an element $\xi=\left(x_{1}, \cdots, x_{m-1} ; y\right)$ of $M_{m}(H)$, we call y the length of ξ and write $y=\|\xi\|$. (We exclude the trivial solution ($0, \cdots, 0 ; 0$).) If H^{\prime} is a cyclic subgroup of H, then $M_{m}\left(H^{\prime}\right)$ is contained in $M_{m}(H)$; in particular, setting $M_{m}=M_{m}(\{1\})$, we have $M_{m} \subset M_{m}(H)$ for any H. There are exactly [$m / 2$] elements of length 1 in $M_{m}(H)$ and they are all contained in M_{m}.

Definition. Let $\xi=\left(x_{1}, \cdots, x_{m-1} ; y\right) \in M_{m}(H)$. Then
(i) ξ is decomposable if $\xi=\xi^{\prime}+\xi^{\prime \prime}$ for some $\xi^{\prime}, \xi^{\prime \prime} \in M_{m}(H)$; otherwise ξ is called indecomposable.
(ii) ξ is quasi-decomposable if there exists $\eta \in M_{m}(H)$ with $\|\eta\|$ ≤ 2 such that $\xi+\eta=\xi^{\prime}+\xi^{\prime \prime}$ for some $\xi^{\prime}, \xi^{\prime \prime} \in M_{m}(H)$ with $\left\|\xi^{\prime}\right\|,\left\|\xi^{\prime \prime}\right\|<\|\xi\|$.
(iii) ξ is semi-decomposable if there exist non-negative integer
solutions (x_{ν}^{\prime}) and ($x_{\nu}^{\prime \prime}$) of (3) such that $x_{\nu}=x_{\nu}^{\prime}+x_{\nu}^{\prime \prime}$ and $\sum x_{\nu}^{\prime}=\sum x_{\nu}^{\prime \prime}=3$ (this occurs only if $y=\|\xi\|=3$).

By Gordan's lemma, there are only finitely many indecomposable elements in $M_{m}(H)$, and they form the minimal set of generators of $M_{m}(H)$. Now let us formulate the following conditions ($P_{m}^{n}(H)$) for n even:
($P_{m}^{n}(H)$) Every indecomposable element ξ of $M_{m}(H)$ with $3 \leq\|\xi\|$ $\leq n / 2+1$ is either quasi-decomposable or semi-decomposable.

This condition is vacuous if $n \leq 2$ or if $M_{m}(H)$ has no indecomposable elements with length ≥ 3. For sufficiently large n, $\left(P_{m}^{n}(H)\right.$) is equivalent to the following :
($P_{m}(H)$) $\quad M_{m}(H)$ has no indecomposable elements of length ≥ 3 which are neither quasi-decomposable nor semi-decomposable.
§2. The Hodge Conjecture for $X_{m}^{n}(0)$. Given a smooth projective variety X over the field of complex numbers C, the Hodge Conjecture for X states that the space of rational cohomology classes of type (d, d) on X is spanned over \boldsymbol{Q} by the classes of algebraic cycles of codimension d on X (cf. [1]). For the Fermat variety $X_{m}^{n}=X_{m}^{n}(0)$ over C, this is non-trivial only in case n is even and $d=n / 2$. We call the condition $\left(P_{m}^{n}(H)\right.$) or $\left(P_{m}(H)\right.$) for $H=\{1\}$ simply $\left(P_{m}^{n}\right)$ or $\left(P_{m}\right)$.

Theorem 1. If the condition $\left(P_{m}^{n}\right)$ is satisfied, then the Hodge Conjecture for the Fermat variety X_{m}^{n} is true.

The condition $\left(P_{m}^{n}\right)$ has been verified for the following values of m and n (at least): 1) m prime, all n (Parry), 2) $m \leq 20$, all n and 3) $m=21$ and $n \leq 10$. Therefore the Hodge Conjecture for X_{m}^{n} is true for these m and n. Thus we have extended the recent results of Ran [2] for m prime to some extent. Hopefully the condition (P_{m}^{n}) might be always true.

Theorem 2. Fix $m>1$. If the condition $\left(P_{m}\right)$ is satisfied, then the Hodge Conjecture for arbitrary product $X_{m}^{n_{1}} \times \cdots \times X_{m}^{n_{k}}$ is true.
§3. The Tate Conjecture for $X_{m}^{n}(\boldsymbol{p})$. Given a smooth projective variety X over a finite field $k=\boldsymbol{F}_{q}$ such that $\bar{X}=X \times \underset{k}{ } \bar{k}$ is irreducible ($\bar{k}=$ the algebraic closure of k), the Tate Conjecture for X over k states that the order of pole of the zeta function $Z(X / k, T)$ at $T=1 / q^{d}$ is equal to the dimension of the subspace of $H_{e t}^{2 d}\left(\bar{X}, \boldsymbol{Q}_{l}\right)$ spanned by classes of k-rational algebraic cycles of codimension d on X ([5, §3]). For the Fermat variety $X_{m}^{n}(p)$, this is non-trivial only in case n is even and $d=n / 2$.

We choose the base field $k=\boldsymbol{F}_{q}$ for $X_{m}^{n}(p)$ as follows. Let f be the order of $p \bmod m$ in $(\boldsymbol{Z} / m)^{\times}$and let $q=p^{f m^{\prime}}$, where $m^{\prime}=$ L.C.M. ($m, \mathbf{2}$). We denote by H_{p} the cyclic subgroup of $(\boldsymbol{Z} / m)^{\times}$generated by $p \bmod m$, and call the condition $\left(P_{m}^{n}\left(H_{p}\right)\right)$ or $\left(P_{m}\left(H_{p}\right)\right)$ simply $\left(P_{m}^{n}(p)\right)$ or $\left.P_{m}(p)\right)$.

Theorem 3. With the above notation, the Tate Conjecture for $X_{m}^{n}(p)$ over \boldsymbol{F}_{q} is true, provided that the condition $\left(P_{m}^{n}(p)\right)$ is satisfied.

The condition $\left(P_{m}^{n}(p)\right)$ has been verified in the following cases:
i) $p \equiv 1(\bmod m), m, n$ satisfying $\left(P_{m}^{n}\right)(c f . \S 2)$.
ii) $p^{\nu} \equiv-1(\bmod m)$ for some ν, m, n arbitrary ("supersingular" case).
Tate himself proved the Conjecture in case i) with $n=2$ and in case ii), and remarked that the case i) with arbitrary n (even) follows from the Hodge Conjecture for X_{m}^{n} ([5, p. 102]). We have also proved the Tate Conjecture for $X_{m}^{n}(p)$ in case ii) and in the surface case:
iii) $n=2, p, m$ arbitrary ($[3, \S 2]$).

Furthermore, we have verified the condition $\left(P_{m}^{n}(p)\right)$ in a few more cases:
iv) $m \leq 8, p, n$ arbitrary.

Note that some cases in iv) are not covered by i), ii) or iii), i.e. $n>2$ and $m=7, p \equiv 2,4$ (7) or $m=8, p \equiv 3,5$ (8).

Theorem 4. Fix m and p. If the condition $\left(P_{m}(p)\right)$ is satisfied, then the Tate Conjecture for arbitrary product $X_{m}^{n_{1}} \times \cdots \times X_{m}^{n_{k}}$ is true.

Remark. The global Tate Conjecture for X_{m}^{n} over certain algebraic number fields follows from the Hodge Conjecture for X_{m}^{n} (cf. [5, § 4]).
§4. The outline of the proof. We shall briefly outline the basic idea of the proof. For simplicity, we write $X^{n}=X_{m}^{n}(p)$, fixing m and p. Let $n=r+s$ with $r, s \geq 1$. Using the inductive structure of X^{n} ([3, Theorem 1.7]), we have a natural isomorphism (*) $\quad\left[H_{\text {prim }}^{r}\left(X^{r}\right) \otimes H_{\text {prim }}^{s}\left(X^{s}\right)\right]^{\mu_{m}} \bigoplus\left[H_{\text {prim }}^{r-1}\left(X^{r-1}\right) \otimes H_{\text {prim }}^{s-1}\left(X^{s-1}\right)(1)\right] \Im H_{\text {prim }}^{n}\left(X^{n}\right)$, which is equivariant with respect to the natural action of G^{n} on each term and which preserves algebraic cycles. Here G^{n} is the quotient group of the ($n+2$)-fold product of μ_{m} by the subgroup of diagonal elements, and $H_{\text {prim }}^{n}\left(X^{n}\right)$ is the "primitive part" of $H^{n}\left(X^{n}\right)$ if n is even ($n \geq 0$), and equal to $H^{n}\left(X^{n}\right)$ if n is odd. The cohomology $H^{n}\left(X^{n}\right)$ is the complex cohomology if $p=0$, and the l-adic etale cohomology if $p>0$, where l is a prime number such that $l \neq p$ and $l \equiv 1(\bmod m)$. We have the eigenspace decomposition of $H_{\mathrm{prim}}^{n}\left(X^{n}\right)$:

$$
H_{\mathrm{prim}}^{n}\left(X^{n}\right)=\underset{\alpha \in \mathfrak{z}_{m}^{n}}{ } V(\alpha), \quad \operatorname{dim} V(\alpha)=1,
$$

where \mathfrak{A}_{m}^{n} is the subset of characters of G^{n} defined by

$$
\mathfrak{U}_{m}^{n}=\left\{\alpha=\left(a_{0}, \cdots, a_{n+1}\right) \mid a_{i} \in \boldsymbol{Z} / m, a_{i} \neq 0, \sum a_{i}=0\right\} .
$$

If $p>0$, the decomposition is compatible with the action of Frobenius endomorphism F of X^{n} relative to F_{q}; the eigenvalue of F^{*} on $V(\alpha)$ is given by the Jacobi sum $j(\alpha)$ of Weil [7] up to the sign (-1$)^{n}$. The condition for $j(\alpha)$ to contribute to the pole of $Z\left(X^{n} / F_{q}, T\right)$ can be explicitly described by Stickelberger's theorem ([8], cf. [3]). If $p=0$,
the condition for $V(\alpha)$ to come from rational cohomology classes of type ($n / 2, n / 2$) can also be described by α ([2], [4]).

Now, by the map (*), we can construct algebraic cycles on X^{n} from those on $X^{r} \times X^{s}$ or $X^{r-1} \times X^{s-1}$. The conditions (P_{m}^{n}) or ($P_{m}^{n}(p)$) say exactly when every candidate of algebraic cycles on $X_{m}^{n}(0)$ or $X_{m}^{n}(p)$ can be constructed inductively from algebraic cycles on X^{0}, X^{2} or $X^{1} \times X^{1}$, where the Hodge Conjecture or the Tate Conjecture is known, the former by Lefschetz theorem and the latter by Tate [6] and Shioda-Katsura [3]. This proves Theorems 1 and 3.

The proof of Theorems 2 and 4 also depends on the existence of the isomorphism (*) preserving algebraic cycles.

References

[1] W. V. D. Hodge: The topological invariants of algebraic varieties. Proc. Int. Congr. Math., 181-192 (1950).
[2] Z. Ran: Cycles on Fermat hypersurfaces (preprint).
[3] T. Shioda and T. Katsura: On Fermat varieties. Tôhoku Math. J., 31, 97115 (1979).
[4] T. Shioda: The Hodge Conjecture for Fermat varieties.
[5] J. Tate: Algebraic cycles and poles of zeta functions. Arithmetical Algebraic Geometry, Harper and Row, New York, 93-110 (1965).
[6] -: Endomorphisms of abelian varieties over finite fields. Invent. Math., 2, 134-144 (1966).
[7] A. Weil: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55, 497-508 (1949).
[8] -: Jacobi sums as "Grössencharaktere". Trans. Amer. Math. Soc., 73, 487-495 (1952).

