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1. Introduction. The aim o this note is to improve the results
of [6], that is, to show that the main results of [6] hold even i we sub-
stitute the amplitude unction a(, t, s, x, y) of (10) in [6] by the constant
function 1. We shall consider the SchrSdinger equation

(t, x) e R
and the initial condition
( 2 ) u(s, x)= (x).
Here 2=ih- is a pure imaginary parameter and h is a small parameter
0hgl. The potential V(t,x) is assumed to satisfy the following
two conditions

(V-I) V(t, x) is real valued. For any fixed t e R, V(t, x) is a C
function of x e R. V(t, x) is measurable in (t, x)e R R.

(V-II) For any multi-index a with length [a[2, the non-negative

measurable function of t defined by

( 3 ) M.(t)--sup V(t, x) + sup IV(t,
xR

is essentially bounded on every compact interval of R.
We fix L10(m+n+10). We put T=

lal =i,te

Otherwise we let T denote an arbitrarily fixed positive number. Every
discussion will be made in the interval (-T, T) throughout this paper.

We shall consider the integral transformation

(--2)/)I e(’’’>(y)dy’( 4 ) E(2, t, s)(x)
2z(t-- s)

where S(t, s, x, y) is the classical action along the classical orbit start-
ing the point y at the time s and reaching the point x at the time t.
(If It--s] is small enough, such an orbit is uniquely determined. See
Proposition I below.) The integral transformation (4) is exactly the
same transformation as Feynman used in [3] and [4].

Let [s, t]c (-- T, T) be an arbitrary interval. Let
A; S=tott. t_t=t

be an arbitrary subdivision of the interval [s, t]. We put
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(A) max t t_ I.
Define Ez(2, t, s)--E(2, t, t._l)E(2, t._, t._.). E(2, t, s)
and

E(, s, t)=E(, s, t)E(, t, t). E(, t._, t).
We shall prove that E(,, t, s) and E(,, s, t) converge to the fundamental
solution when (A) tends, to 0.

2. Main results. Our main results are the following theorems.
Theorem 1. Assume that V(t, x) satisfies the assumptions (V-I)-

(V-II). Let [s, t] be an arbitrary subinterval of (--T, T). Then there
exist unitary operators U(2, t, s) and U(2, s, t) of the Hilbert space
L(R) such that
( 5 ) lim U(2, t, s) E(2, t, s) 0,

a(,)-,o

( 6 ) lim u(, s, t)-Ea(2, s, t)I1=0.
a(,) --.o

More precisely, there exists a positive constant l’o such that
( 7 ) 11U(, t, s) EA, t, s)II <- r0 It s (J) exp l’0 It s 1,
( 8 ) U(2, s, t) E(2, s, t) II-< t’0 It s (A) ex.p ’0 It s I.
Where 7o depends on T but not on particular choice of t, s, and sub-
division if 121_ 1.

This theorem means that Feynman path integral converges in
the uniform operator topology i the potential satisfies (V-I)-(V-II).

Theorem 2. Put U(2, t, t)-I for any t e R. Then {U(2, t,
is a family of unitary operators satisfying the following properties

( ) U(2, t, t)-I.
(ii) U(2, t, s)= U(2, t, s) U(2, s, s) for any t, s, s in R.
(iii) U(2, t, s) is strongly continuous in (t, s) e R.
(iv) U(, t, s) is a topological linear isomorphism of (R).

For any e 3(R), let u(t, x)= U(2, t, s)(x). Then, u(t, x) satisfies the
initial condition u(s, x)=(x) and the equation

( 9 ) u(t, x) +H(, t)u(t, x)=0 at almost every t,

where H(2, t) is the Hamiltonian operator (1/2) ]__ (3/2x)+ V(t, x)
restricted to q(R).

Remark. If we assume, in addition to (V-I)-(V-II), that V(t, x)
is continuous in (t, x) e R/, then, the equation (9) holds everywhere.

3. Sketch of the proofs. The classical mechanics correspond-
ing to (1) is described by the Hamiltonian canonical equations

(10) dx _, d__ aV(t, x).
dt dt 3x

We consider these under the initial condition
(11) x(s) =y, (s) =.
We denote the solution of these as x(t)=x(t, s, y, ) and (t)=(t, s, y, ).
By studying this orbit in detail, we obtain the following propositions.

Proposition 1. Assume the assumptions (V-I)-(V-II). Then,



12 D. FUfflWARA [Vol. 55 (A),

there exists a positive constant I(T)0 such that S(t,s, x, y) is well
defined if

Proposition 2. Assume that ]t--s]<_(T). Let s be fixed. Then,
the function S(t, s, x, y) of (t, x, y) is totally differentiable at almost
everywhere in (s--(T), s + (T)) R R. It satisfies the Hamilton-
Jacobi partial differential equation

0 S(t, , , )+ 1 S(t , , ) + V(t, )=0(12)
at

almost everywhere.
Proposition . Assume that Ot--sg(T). Then the action

S(t, s, x, y) is of the form
1 Ix-y + (t-s)(t s, x, y).03) S(t, s, x, y)

t- s
For any pair of multi-indices and fl with length iaJ+]fl]2, we have

k x / k y /

where C.p is a positive constant independent of (t, s, x, y).
The next proposition ollows rom this and the result in [5].
Proposition 4. i) There exists a positive constant such that

(15) liE(, t, s)ll g7 I]ll for any in C(R)
if It-slg5(T).

ii) s-limt, E(, t, s)= for any in L2(R).
As a consequence of Proposition 3, direct computation yields

//

2(t--s) 22
almost everywhere.

Definition 5. We introduce the integral operator
(17) G(, t, s)(x), 2(t-s) 22

Just as in Proposition 4, we can prove

Proposition 6. There exists a positive constant such that
(18) G(2, t, s)llr= I-s1121- IIll.

is independent of t, s, 2, but it depends on T.
Let H(2, t) denote the minimal closed extension of the Hamiltonian

operator restricted to (R"). We introduce the following pseudo-
differential operators.

Definition 7. We put, or ]1, 2, ., n,

(19) X(2, $, s)(x): e(-)’x($, s, y, )(y)dyd
R XR
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and

(20)

(21)

and
(22)

( " ) S e(-v)"(t’ s’ Y’ i)?(y)dyd]"(, t, s)(x)= -Using the results of Asada-Fujiwara [1], we obtain

Proposition 8. We have the formulae, for ], k=l, 2,..., n,

( E(, t, s)--E(, t, s)(, t, s)(, t, s))(x)3x 3x

=(. ts_)(p(, t, s)Z(I, t, s)+P(I, t, s)Z(I, t, s))(x)

P(i, t, )()

(xxE(, t, s)--E(, t, s)X(, t, s)X(, t, s))(x)

=(- t-s.._)(Q(2,- t, s)X(2 t, s)+Q(2, t, s)X(2, t, s))(x)

+(t-s) Q(, t, s)(x).

The norm of operators P(, t, s), P(2, t, s), Q(2, t, s) and Q(2, t, s)
are bounded uniformly in t, s and if I1>_ 1.

Since (, t, s) and X(, t, s) maps (R) into itself, we obtain
Proposition 9. If e (Rn), then E(2, t, s) belongs to the domain

D(H(, t)) of the operator H(, t). Moreover, we have

(23) E(, t, s)--= -- i H(, )E(, , s)d+ i G(, , s)d.
The right hand side is the Bochner integral in L(R).

Using this, we can prove the following basic properties, of E(2, t, s).
Proposition 10. For any t, s and s satisfying

<_3(T) and It-sl<_3(T), we have the following estimates;
( ) [IE(2, t,s)*E(2, t,s)-E(,s,s)ll<_(It--sl+ls-sl),
(ii) E(2, t, s)II <-- exp . It-- s ,
(iii) E(2, t, s)--E(, t, s)E(, s, s)II <- (I t-- s +ls-- s I),
(iv) [IE(, t, s)*--E(, t, s)-ll<_ lt--sl,
( v ) E(2, t, s)E(2, s, t)-- I I_ It-- s

where . is a positive constant independent of t, s, s and provided
It-sl<_3(T), Is--sl<_3(T), It--sl<_3(T) and

Theorem 1 ollows. rom Proposition 10.

To prove Theorem 2, we use the ollowing 2act.
Proposition 11. For any t, , s in R, we have

(24) ((, t, r) U(2, , s)--U(,, , s)(, t, s))
=-1 U(, , )P(, t, a)U(, , s)d

and
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(25)

where

and

(Xa(2, t, r)U(2, r, s)- U(2, r, s)Xs(2, t, s))

=- U(, , )Q(, t, )U(, , s)d,

Ps(2, t,s)= s(,t,s)+[H(,s),s(,t,s)]

Q(2, t, s)= X(2, t, s) + 2[H(2, s), X(2, t, s)]

are pseudo-differential operators of CalderSn-Vaillancourt type in [2].
Since P(,t,s) and Q(,t,s) are pseudo-differential operators

which are bounded in L(R), (3/23x)U(2, t, s) e L(R) i both (2, t, s)
and belong to L(R). Repeating similar discussions, we can prove
that or any pair of multi-indices a and , x(3/2x)U(2, t, s) e L(R)
i e 3(R), which proves that U(, t, s) e 3(R0. The closed graph
theorem proves that U(, t, s) is a topological linear isomorphism of
3(R). Theorem 2 is proved.
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