3. A Construction of the Fundamental Solution for the Schrödinger Equations

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)
§ 1. Introduction. The aim of this note is to improve the results of [6], that is, to show that the main results of [6] hold even if we substitute the amplitude function $a(\lambda, t, s, x, y)$ of (10) in [6] by the constant function 1. We shall consider the Schrödinger equation

$$
\begin{align*}
\frac{\partial}{\lambda \partial t} u(t, x)+\frac{1}{2} \sum_{j=1}^{n}\left(\frac{\partial}{\lambda \partial x_{j}}\right)^{2} u(t, x)+V(t, x) u(t, x) & =0 \tag{1}\\
(t, x) & \in \mathbf{R} \times \mathbf{R}^{n}
\end{align*}
$$

and the initial condition

$$
\begin{equation*}
u(s, x)=\varphi(x) . \tag{2}
\end{equation*}
$$

Here $\lambda=i h^{-1}$ is a pure imaginary parameter and h is a small parameter $0<h \leq 1$. The potential $V(t, x)$ is assumed to satisfy the following two conditions;
(V-I) $\quad V(t, x)$ is real valued. For any fixed $t \in \mathrm{R}, V(t, x)$ is a C^{∞} function of $x \in \mathbf{R}^{n} . \quad V(t, x)$ is measurable in $(t, x) \in \mathrm{R} \times \mathrm{R}^{n}$.
(V-II) For any multi-index α with length $|\alpha| \geq 2$, the non-negative measurable function of t defined by

$$
\begin{equation*}
M_{\alpha}(t)=\sup _{x \in \mathbb{R}^{n}}\left|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(t, x)\right|+\sup _{|x| \leq 1}|V(t, x)| \tag{3}
\end{equation*}
$$

is essentially bounded on every compact interval of R^{1}.
We fix $L \geq 10(m+n+10)$. We put $T=\infty$ if $\underset{|\alpha|=L, t \in \mathbb{R}}{\text { ess. }} \sup _{\alpha}(t)<\infty$. Otherwise we let T denote an arbitrarily fixed positive number. Every discussion will be made in the interval $(-T, T)$ throughout this paper.

We shall consider the integral transformation

$$
\begin{equation*}
E(\lambda, t, s) \varphi(x)=\left(\frac{-\lambda}{2 \pi(t-s)}\right)^{(1 / 2) n} \int_{\mathrm{R}^{n}} e^{\lambda S(t, s, x, y)} \varphi(y) d y \tag{4}
\end{equation*}
$$

where $S(t, s, x, y)$ is the classical action along the classical orbit starting the point y at the time s and reaching the point x at the time t. (If $|t-s|$ is small enough, such an orbit is uniquely determined. See Proposition 1 below.) The integral transformation (4) is exactly the same transformation as Feynman used in [3] and [4].

Let $[s, t] \subset(-T, T)$ be an arbitrary interval. Let

$$
\Delta ; s=t_{0}<t_{1}<t_{2}<\cdots<t_{L-1}<t_{L}=t
$$

be an arbitrary subdivision of the interval $[s, t]$. We put

$$
\delta(\Lambda)=\max \left|t_{j}-t_{j-1}\right| .
$$

Define $E_{\Delta}(\lambda, t, s)=E\left(\lambda, t, t_{L-1}\right) E\left(\lambda, t_{L-1}, t_{L-2}\right) \cdots E\left(\lambda, t_{1}, s\right)$
and

$$
E_{\Delta}(\lambda, s, t)=E\left(\lambda, s, t_{1}\right) E\left(\lambda, t_{1}, t_{2}\right) \cdots E\left(\lambda, t_{L-1}, t\right) .
$$

We shall prove that $E_{\alpha}(\lambda, t, s)$ and $E_{\alpha}(\lambda, s, t)$ converge to the fundamental solution when $\delta(4)$ tends to 0 .
§ 2. Main results. Our main results are the following theorems.
Theorem 1. Assume that $V(t, x)$ satisfies the assumptions (V-I)-(V-II). Let $[s, t]$ be an arbitrary subinterval of $(-T, T)$. Then there exist unitary operators $U(\lambda, t, s)$ and $U(\lambda, s, t)$ of the Hilbert space $L^{2}\left(\mathrm{R}^{n}\right)$ such that

$$
\begin{align*}
& \lim _{\delta(\alpha) \rightarrow 0}\left\|U(\lambda, t, s)-E_{A}(\lambda, t, s)\right\|=0, \tag{5}\\
& \lim _{\delta(\alpha)=0}\left\|U(\lambda, s, t)-E_{\Delta}(\lambda, s, t)\right\|=0 . \tag{6}
\end{align*}
$$

More precisely, there exists a positive constant γ_{0} such that

$$
\begin{equation*}
\left\|U(\lambda, t, s)-E_{\Delta}(\lambda, t, s)\right\| \leq \gamma_{0}|t-s| \delta(\Delta) \exp \gamma_{0}|t-s|, \tag{7}
\end{equation*}
$$

(8) $\left\|U(\lambda, s, t)-E_{4}(\lambda, s, t)\right\| \leq \gamma_{0}|t-s| \delta(4) \exp \gamma_{0}|t-s|$.

Where γ_{0} depends on T but not on particular choice of t, s, λ and subdivision Δ if $|\lambda| \geq 1$.

This theorem means that Feynman path integral converges in the uniform operator topology if the potential satisfies (V-I)-(V-II).

Theorem 2. Put $U(\lambda, t, t)=I$ for any $t \in$ R. Then $\left\{U(\lambda, t, s\}_{(t, s) \in \mathrm{R}^{2}}\right.$ is a family of unitary operators satisfying the following properties;
(i) $U(\lambda, t, t)=I$.
(ii) $U(\lambda, t, s)=U\left(\lambda, t, s_{1}\right) U\left(\lambda, s_{1}, s\right)$ for any t, s_{1}, s in R .
(iii) $U(\lambda, t, s)$ is strongly continuous in $(t, s) \in \mathbf{R}^{2}$.
(iv) $U(\lambda, t, s)$ is a topological linear isomorphism of $\mathcal{S}\left(\mathrm{R}^{n}\right)$.

For any $\varphi \in \mathcal{S}\left(R^{n}\right)$, let $u(t, x)=U(\lambda, t, s) \varphi(x)$. Then, $u(t, x)$ satisfies the initial condition $u(s, x)=\varphi(x)$ and the equation

$$
\begin{equation*}
\frac{\partial}{\lambda \partial t} u(t, x)+H(\lambda, t) u(t, x)=0 \quad \text { at almost every } t, \tag{9}
\end{equation*}
$$

where $H(\lambda, t)$ is the Hamiltonian operator (1/2) $\sum_{j=1}^{n}\left(\partial / \partial \partial x_{j}\right)^{2}+V(t, x)$ restricted to $\mathcal{S}\left(\mathrm{R}^{n}\right)$.

Remark. If we assume, in addition to (V-I)-(V-II), that $V(t, x)$ is continuous in $(t, x) \in \mathrm{R}^{n+1}$, then, the equation (9) holds everywhere.
§3. Sketch of the proofs. The classical mechanics corresponding to (1) is described by the Hamiltonian canonical equations

$$
\begin{equation*}
\frac{d x}{d t}=\hat{\xi}, \quad \frac{d \xi}{d t}=-\frac{\partial V(t, x)}{\partial x} . \tag{10}
\end{equation*}
$$

We consider these under the initial condition
(11)

$$
x(s)=y, \quad \xi(s)=\eta .
$$

We denote the solution of these as $x(t)=x(t, s, y, \eta)$ and $\xi(t)=\xi(t, s, y, \eta)$.
By studying this orbit in detail, we obtain the following propositions.
Proposition 1. Assume the assumptions (V-I)-(V-II). Then,
there exists a positive constant $\delta_{1}(T)>0$ such that $S(t, s, x, y)$ is well defined if $|t-s| \leq \delta_{1}(T)$.

Proposition 2. Assume that $|t-s| \leq \delta_{1}(T)$. Let s be fixed. Then, the function $S(t, s, x, y)$ of (t, x, y) is totally differentiable at almost everywhere in $\left(s-\delta_{1}(T), s+\delta_{1}(T)\right) \times \mathbf{R}^{n} \times \mathbf{R}^{n}$. It satisfies the HamiltonJacobi partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} S(t, s, x, y)+\frac{1}{2}\left|\frac{\partial}{\partial x} S(t, s, x, y)\right|^{2}+V(t, x)=0 \tag{12}
\end{equation*}
$$

almost everywhere.
Proposition 3. Assume that $0<|t-s| \leq \delta_{1}(T)$. Then the action $S(t, s, x, y)$ is of the form

$$
\begin{equation*}
S(t, s, x, y)=\frac{1}{2} \frac{|x-y|^{2}}{t-s}+(t-s) \omega(t, s, x, y) \tag{13}
\end{equation*}
$$

For any pair of multi-indices α and β with length $|\alpha|+|\beta| \geq 2$, we have

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial y}\right)^{\beta} \omega(t, s, x, y)\right| \leq C_{\alpha \beta} \tag{14}
\end{equation*}
$$

where $C_{\alpha \beta}$ is a positive constant independent of (t, s, x, y).
The next proposition follows from this and the result in [5].
Proposition 4. i) There exists a positive constant γ_{1} such that
(15) $\quad\|E(\lambda, t, s) \varphi\| \leq \gamma_{1}\|\varphi\| \quad$ for any φ in $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$
if $|t-s| \leq \delta_{1}(T)$. $\quad \gamma_{1}$ depends on T but not on t, s, λ and φ.
ii) $s-\lim _{t \rightarrow s} E(\lambda, t, s) \varphi=\varphi$ for any φ in $L^{2}\left(\mathbf{R}^{n}\right)$.

As a consequence of Proposition 3, direct computation yields

$$
\begin{gather*}
\left(\frac{\partial}{\lambda \partial t}+\frac{1}{2} \sum_{j}\left(\frac{\partial}{\lambda \partial x_{j}}\right)^{2}+V(t, x)\right)\left(\left(\frac{-\lambda}{2 \pi(t-s)}\right)^{n / 2} e^{\lambda S(t, s, x, y)}\right) \tag{16}\\
\quad=\left(\frac{-\lambda}{2 \pi(t-s)}\right)^{n / 2} \frac{(t-s)}{2 \lambda} \Delta_{x} \omega(t, s, x, y) e^{\lambda S(t, s, x, y)}
\end{gather*}
$$

almost everywhere.
Definition 5. We introduce the integral operator

$$
\begin{align*}
& G(\lambda, t, s) \varphi(x) \tag{17}\\
& \quad=\left(\frac{-\lambda}{2 \pi(t-s)}\right)^{n / 2} \frac{(t-s)}{2 \lambda} \int_{\mathrm{R}^{n}} \Delta_{x} \omega(t, s, x, y) e^{\lambda s(t, s, x, y)} \varphi(y) d y
\end{align*}
$$

Just as in Proposition 4, we can prove
Proposition 6. There exists a positive constant γ_{2} such that

$$
\begin{equation*}
\|G(\lambda, t, s) \varphi\| \leq \gamma_{2}\left|t-s\left\|\left.\lambda\right|^{-1}\right\| \varphi \| .\right. \tag{18}
\end{equation*}
$$

γ_{2} is independent of t, s, λ, φ but it depends on T.
Let $H(\lambda, t)$ denote the minimal closed extension of the Hamiltonian operator restricted to $\mathcal{S}\left(\mathbf{R}^{n}\right)$. We introduce the following pseudodifferential operators.

Definition 7. We put, for $j=1,2, \cdots, n$,

$$
\begin{equation*}
X_{j}(\lambda, t, s) \varphi(x)=\left(\frac{\lambda}{2 \pi}\right)^{n} \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{\lambda(x-y) \cdot \eta} x_{j}(t, s, y, \eta) \varphi(y) d y d \eta \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\Xi_{j}(\lambda, t, s) \varphi(x)=\left(\frac{\lambda}{2 \pi}\right)^{n} \iint_{\mathrm{R}^{n} \times \mathrm{R}^{n}} e^{\lambda(x-y) \cdot n} \xi_{j}(t, s, y, \eta) \varphi(y) d y d \eta . \tag{20}
\end{equation*}
$$

Using the results of Asada-Fujiwara [1], we obtain
Proposition 8. We have the formulae, for $j, k=1,2, \cdots, n$,

$$
\begin{align*}
& \left(\frac{\partial}{\lambda \partial x_{j}} \frac{\partial}{\lambda \partial x_{k}} E(\lambda, t, s)-E(\lambda, t, s) \Xi_{j}(\lambda, t, s) \Xi_{k}(\lambda, t, s)\right) \varphi(x) \tag{21}\\
& \quad=\left(\frac{t-s}{\lambda}\right)\left(P_{j}(\lambda, t, s) \Xi_{j}(\lambda, t, s)+P_{k}(\lambda, t, s) \Xi_{k}(\lambda, t, s)\right) \varphi(x) \\
& \quad+\left(\frac{t-s}{\lambda}\right)^{2} P_{j k}(\lambda, t, s) \varphi(x)
\end{align*}
$$

and

$$
\begin{align*}
\left(x_{j} x_{k} E\right. & \left.(\lambda, t, s)-E(\lambda, t, s) X_{j}(\lambda, t, s) X_{k}(\lambda, t, s)\right) \varphi(x) \tag{22}\\
= & \left(\frac{t-s}{\lambda}\right)\left(Q_{j}(\lambda, t, s) X_{j}(\lambda, t, s)+Q_{k}(\lambda, t, s) X_{k}(\lambda, t, s)\right) \varphi(x) \\
& +\left(\frac{t-s}{\lambda}\right)^{2} Q_{j k}(\lambda, t, s) \varphi(x) .
\end{align*}
$$

The norm of operators $P_{j}(\lambda, t, s), P_{j k}(\lambda, t, s), Q_{j}(\lambda, t, s)$ and $Q_{j k}(\lambda, t, s)$ are bounded uniformly in t, s and λ if $|\lambda| \geq 1$.

Since $\Xi_{j}(\lambda, t, s)$ and $X_{j}(\lambda, t, s)$ maps $\mathcal{S}\left(\mathbf{R}^{n}\right)$ into itself, we obtain
Proposition 9. If $\varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$, then $E(\lambda, t, s) \varphi$ belongs to the domain $D(H(\lambda, t))$ of the operator $H(\lambda, t)$. Moreover, we have

$$
\begin{equation*}
E(\lambda, t, s) \varphi-\varphi=-\lambda \int_{s}^{t} H(\lambda, \sigma) E(\lambda, \sigma, s) \varphi d \sigma+\lambda \int_{s}^{t} G(\lambda, \sigma, s) \varphi d \sigma \tag{23}
\end{equation*}
$$

The right hand side is the Bochner integral in $L^{2}\left(\mathbf{R}^{n}\right)$.
Using this, we can prove the following basic properties of $E(\lambda, t, s)$.
Proposition 10. For any t, s and s_{1} satisfying $|t-s| \leq \delta_{1}(T),\left|s-s_{1}\right|$ $\leq \delta_{1}(T)$ and $\left|t-s_{1}\right| \leq \delta_{1}(T)$, we have the following estimates;
(i) $\left\|E\left(\lambda, t, s_{1}\right) * E(\lambda, t, s)-E\left(\lambda, s_{1}, s\right)\right\| \leq \gamma_{3}\left(\left|t-s_{1}\right|^{2}+\left|s_{1}-s\right|^{2}\right)$,
(ii) $\|E(\lambda, t, s)\| \leq \exp \gamma_{3}|t-s|^{2}$,
(iii) $\left.\left\|E(\lambda, t, s)-E\left(\lambda, t, s_{1}\right) E\left(\lambda, s_{1}, s\right)\right\| \leq \gamma_{3}\left|t-s_{1}\right|^{2}+\left|s_{1}-s\right|^{2}\right)$,
(iv) $\left\|E(\lambda, t, s)^{*}-E(\lambda, t, s)^{-1}\right\| \leq \gamma_{3}|t-s|^{2}$,
(v) $\|E(\lambda, t, s) E(\lambda, s, t)-I\| \leq \gamma_{3}|t-s|^{2}$,
where γ_{3} is a positive constant independent of t, s, s_{1} and λ provided $|t-s| \leq \delta_{1}(T),\left|s_{1}-s\right| \leq \delta_{1}(T),\left|t-s_{1}\right| \leq \delta_{1}(T)$ and $|\lambda| \geq 1$.

Theorem 1 follows from Proposition 10.
To prove Theorem 2, we use the following fact.
Proposition 11. For any t, τ, s in R , we have

$$
\begin{align*}
& \left(\Xi_{j}(\lambda, t, \tau) U(\lambda, \tau, s)-U(\lambda, \tau, s) \Xi_{j}(\lambda, t, s)\right) \varphi \tag{24}\\
& \quad=\lambda^{-1} \int_{s}^{\tau} U(\lambda, \tau, \sigma) \tilde{P}_{j}(\lambda, t, \sigma) U(\lambda, \sigma, s) \varphi d \sigma
\end{align*}
$$

and

$$
\begin{align*}
& \left(X_{j}(\lambda, t, \tau) U(\lambda, \tau, s)-U(\lambda, \tau, s) X_{j}(\lambda, t, s)\right) \varphi \tag{25}\\
& \quad=\lambda^{-1} \int_{s}^{\tau} U(\lambda, \tau, \sigma) \tilde{Q}_{j}(\lambda, t, \sigma) U(\lambda, \sigma, s) \varphi d \sigma
\end{align*}
$$

where

$$
\tilde{P}_{j}(\lambda, t, s)=\frac{d}{d s} \Xi_{j}(\lambda, t, s)+\lambda\left[H(\lambda, s), \Xi_{j}(\lambda, t, s)\right]
$$

and

$$
\tilde{Q}_{j}(\lambda, t, s)=\frac{d}{d s} X_{\jmath}(\lambda, t, s)+\lambda\left[H(\lambda, s), X_{\jmath}(\lambda, t, s)\right]
$$

are pseudo-differential operators of Calderón-Vaillancourt type in [2].
Since $\tilde{P}_{j}(\lambda, t, s)$ and $\tilde{Q}_{j}(\lambda, t, s)$ are pseudo-differential operators which are bounded in $L^{2}\left(\mathbf{R}^{n}\right),\left(\partial / \lambda \partial x_{j}\right) U(\lambda, t, s) \varphi \in L^{2}\left(\mathbf{R}^{n}\right)$ if both $\Xi_{j}(\lambda, t, s) \varphi$ and φ belong to $L^{2}\left(\mathrm{R}^{n}\right)$. Repeating similar discussions, we can prove that for any pair of multi-indices α and $\beta, x^{\alpha}(\partial / \lambda \partial x)^{\beta} U(\lambda, t, s) \varphi \in L^{2}\left(\mathbf{R}^{n}\right)$ if $\varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$, which proves that $U(\lambda, t, s) \varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. The closed graph theorem proves that $U(\lambda, t, s)$ is a topological linear isomorphism of $\mathcal{S}\left(\mathbf{R}^{n}\right)$. Theorem 2 is proved.

References

[1] Asada, K., and Fujiwara, D.: On some oscillatory integral transformations in $L^{2}\left(R^{n}\right)$ (to appear in Jap. J. Math., 4).
[2] Calderón, A. P., and Vaillancourt, R.: On the boundedness of pseudo-differential operators. J. Math. Soc. Japan., 23, 374-378 (1970).
[3] Feynman, R. P.: Space time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20, 367-387 (1948).
[4] Feynman, R. P., and Hibbs, A. R.: Quantum mechanics and path integrals. Mcgraw-Hill, New York (1965).
[5] Fujiwara, D.: On the boundedness of integral transformations with highly oscillatory kernels. Proc. Japan Acad., 51, 96-99 (1975).
[6] -: Fundamental solution of partial differential operators of Schrödinger's type. III. Ibid., 54A, 62-66 (1978).

