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1. Introduction. O. Heaviside intrc/duced in 1899 an oper-
ational calculus [1] which he successfully applied to the integration of
linear ordinary differential equations with constant coefficients. In his
calculus occured certain operators whose interpretation as given by
Heaviside and his successors, is not only difficult to justify but also the
range of validity of this calculus developed so ar remains unclear.
In 1949, J. Mikusifiski inaugurated the theory [2] of convolution quo-
tients by which he provided a clear and simple operational calculus
well-suited or the purpose. His theory is based upon Titchmarsh’s
theorem concerning the vanishing of convolution o two continuous
functions defined on [0, c).

The purpose o the present paper is to show that we are able to
simplify Mikusifiski’s operational calculus in such a way that we need
not appeal to Titchmarsh’s theorem at all. It is to be noted that the
author has given in Okamoto [5] another approach which does not
appeal to Titchmarsh’s theorem.

2. The convolution ring and the ring g. We denote by
the totality of the complex number valued continuous functions f
defined on [0, oo). In this paper, we write such functions by (f(t)} or
simply by f, while f(t) means the value at t of the unction f.

For f, g e , let the addition of two/functions f and g be defined by
( 1 ) f+ g-- {f(t) + g(t)}
and the multiplication of f and g by the convolution"

(2) fg- (: f(t-u)g(u)du1.
Then we see that is a commutative ring with respect to this addition
and this. multiplication. We call it the convolution ring.

Throughout this paper, h will denote the constant function {1}. So
we get

(3) h--( t- .} n-1,2,3,....
(n--l)

Furthermore, or any f e , we have
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so that h may be regarded as the operator of integration. Hence the
equality hf--O (={0}) implies that f--0. Thus, by putting H--{k;k
=h, n-l, 2, 3,... }, we have the following

Proposition 1. For k e H and f e , the equality kf=O implies
that f=0.

Therefore we can construct the ring n of ractions of with
denominators belonging to H"

={-;fe and kH}
where the equality is, defined by

(4) f f’

and the addition and the multiplication are defined by the usual rules
about fractions.

By the mapping rom to H
(5) f:

k
the ring can be isomorphically imbedded into the ring n so that we
shall identify f with fk/k. For any complex number a, we write
or the element {a}/h in . Then we have
( 6 ) [] + [fl] [+ fl], [][fl] [fl]
and

(7) [a]f-erf (--{af(t)}), [a] f af (- {af(t)})k k k
where a, fle C, f e and k e H. Thus, by (6), [a] can be identified
with the complex number a, and by (7) we see that the effect of the
multiplication by [a] is exactly the a-times multiplication. In par-
ticular, [1] is the unit element of which will be written by 1.

Proposition 2. For e C, i--l, 2,..., n we have
( S ) (n !)-l{1}n-{/Jn q-Ol;n--} -}- 0n}

whre are roots of the polynomial

tn -J[- O_____ltn-1 .- 02 in-2 ._ .- O.____no
n n(n-- 1) n

Proof. {t+ct-+... +
--z hn+ q- (-- 1) h,n q-... q- nh (by (8))

----,’ h(hn+ [-] hn-l"df- + [---,]) (by (7))

:n h(h-- [fll])(h-- [fl])... (h- [fin]) (by (6))
--n h-n(h-{#l})(h-{}) (h-{#,})

Hence, by multiplying both sides by (n !)-h"-1, we obtain (8).

3. The ring of convolution quotients. Let be a complex



No. 1] Mikusifiski’s Operational Calculus 3

number and f be a continuous function e . Assume that pf=O with
p={t-a}. Then, by (2), we see that f must satisfy the differential
equation

f’--f=O f(0) =0.
Hence we must have f=0. Therefore, by virtue of Proposition 2 we
see that, even if p is a non-zero general polynomial in t, the equality
implies that f=0.

Let now P denote the totality of non-zero polynomials, in t. Then,
as in the case of the ring n, we can construct the ring e of fractions
of with denominators belonging to P. Since the set H is contained
in P, we can consider the ring n as a subring of e. In particular,
any element f
e where k e H and p e P. The ring e will be called the ring of
convolution quotients. Henceforth We shall call these convolution
quotients e e as operators.

The differential operator s. We define the operator s by
1 h(9) s----.--
h h

and call it the differential operator, since we have
Proposition :. If f e has a continuous derivative ft, then

(10) f’--sf--f(O)
where f(0) {f(0)} /h= [f(0)].

Proof. We have

hf’= {:f’(u)du1_ {f(t)--f(0)}= f--[f(0)]h.

Hence we obtain (10).
Corollary. For n-times continuously differentiable functionf e

we have
(11) f() sf s-f(O) s-f(0) f(-(0)
where f()(0) {()(0)} /h= [f()(0)] (] 1, 2, 3, ., n).

Rational functions of s. A non-zero polynomial in s is a rational
function of h so that we can represent it as a fraction whose denomi-
nator and numerator both belong to P. Hence its inverse exists
in e. Therefore we can manipulate rational unctions of s in e.
In particular, we have the 2ollowing

Proposition 4. The following identity holds good:

(12) 1

where in the left side term should be understood as [a].
Proof. We have

1) We might express as "the (special) ring" to distinguish it from the ring

H and Mikusifiski’s field of convolution quotients.
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h
s--a 1 /h--{a} /h h-- {a}h {1 --at}

I is trivial hat {1--at}{e"}={t}. Thus we have proved (12).
Corollary.

(13)
(s--a)" (n-- 1)

e"

Proof. For n=2, we have
1 {e.}{e,} {!e.}"

The general case may be proved by induction.
Remark. By (6) and (7), we may manipulate rational unctions

of s in the same way as ordinary rational unctions. Thus we can
decompose such rational unctions of s in partial ractions.

4. Applications to differential equations and integral equations.
We now have all the tools required or solving) a linear ordinary dif-
ferential equation with constant coefficients

f) +f(-) +... +f=g e C
and also a Volterra integral equation o such a type that in its inte-
grated part {K(t)}.{f(t)} the kernel {K(t)} is given by a linear combi-
nation o {te"t}’s. In the case of the above differential equation, we
rewrite, by (11), the equation in the operator orm. Then we solve it
with respect to the unknown unction f obtaining

f=
p(s) + g
p.(s)

where p(s)and p(s) are polynomials in s such that p.(s)O and the
degree o p(s)is smaller than that of p(s). Hence, by (13), we get
the explicit expression of the solution {f(t)} e C.

In the case of integral equation, we can rewrite, by (13), the
equation in the operator iorm, and so we obtain the solution similarly
as above.

Remark. By introducing the notion of the convergence) in the
same way as in Mikusifiski’s, we also have some other applications of
our calculus.
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