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32. Cosine Families and Weak Solutions of Second Order
Differential Equations

By Shigeo KANDA
Department of Mathematics, Waseda University

(Communicated by Kdsaku YosIpA, M. J. A.,, May 12, 1978)

Let A be a densely defined closed linear operator on a real or
complex Banach space X, let 7>0 and let g e L'(0,T; X). Recently,
Ball [1] proved that there exists for each x ¢ X a unique weak solu-
tion, suitable defined, of the equation u/(t)=Awu(t)+ g(t), t € [0, T1, u(0)
=g if and only if A is the infinitesimal generator of a (C,)-semigroup
{T(®); t>0} on X, and in this case the solution u(f) is given by

W) =TE)z+ j: T(t—s)g(s)ds,  tel0,T].

The purpose of this note is to establish the parallel relationship be-
tween cosine families and second order differential equations

. w"(t):Aw(t)+g(t), te [0, T],
Vi 2, v) {w(0)=x eX, w(O)=yeX.

Let A* denote the adjoint of A and <, > the pairing between X
and its dual space X*.

Definition. A function w e C([0,T]; X) is a weak solution of
AV; x,y) if and only if for every v € D(A*) the function (w(t), v) is
differentiable on [0, T'], (d/ dt)<w(t), v) is absolutely continuous on [0, T']

and
(1) {(dz/dt2)<w(t), vy=<w(t), A*v>+{9{®), v)> a.e.t [0, T],
w0)=x and (d/dO){w®), V) |s—0=<Y, V).

Our theorem is now stated as follows:

Theorem. Thereexists for each pair [z, y] € X X X a unique weak
solution w(t) of AV ; x,y) if and only if A is the infinitesimal generator
of a cosine family {C(t);te R=(— o0, )} on X, and in this case w(t)
is given by

(2) w(t)=0(t>x+S(t>y+j: St—s)g(s)ds,  telo,Tl,

where {S(t) ; t € R} is the sine family associated with {C(t);t e R}.

Remark. Let B(X) denote the set of all bounded linear operators
from X into itself. A one-parameter family {C({); ¢ € R} in B(X) is
called a cosine family if it satisfies the following conditions:

(i) C(s+t)+C(s—t)=2C(s)C(t) for all s,te R;

(ii) C(0)=I (the identity operator);

(iii) C()x: R—X is continuous for every z ¢ X.
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The associated sine family {S®); t € R} is the one-parameter family in
B(X) defined by

S(t)x:j: C(s)x ds for x e X and ¢t e R.

The infinitesimal generator A’ of a cosine family {C(¢); te R} on X is
defined by A’z=lim,_,2t-%(C({)x—x) whenever the limit exists. Let
{C(®); t € R} be a cosine family on X, with the infinitesimal generator
A’ and the associated sine family {S(?); t € R}; the following properties
are well known (see [2], [4] and [5]):

(iv) there exist constants K>1 and >0 such that ||C(t) || < Ke*'!!
forall teR,

(v) A’is a densely defined closed linear operator,

(vi) I’S(o)x do € D(A’) and C()z—C(s)z=A’ j S()x do for e X
and s,teR,

(vii) if z(¢): [0, T]—>X is twice (strongly) continuously differen-
tiable, z(t) e D(A") for te[0,T], and (d?/dt?)z(t)=A’z(t) for t <0, T]
and 2(0)=2'(0)=0, then z(t)=0 for all ¢ ¢ [0, T1].

To prove the theorem we use the following lemmas (see [1, Lem-
ma] and [3,(1.3.8.) Lemmal]):

Lemma 1 ([11). Let z, ze X satisfy <{z,v)=<{x,A*v> for all
ve D(A*). Then xcD(A) and z=Ax.

Lemma 2 ([3]). Let {C(t);te R} be a one-parameter family in
B(X) such that C(t)x: R—X is continuous for every xe X. If

(a) C@)DA)CD(A) forall te R,

(b) foreach x e D(A), the function C(t)x: R—X is twice (strongly)
continuously differentiable, and C’({t)x=ACH)x=C@{t)Axz for teR,
C0)x=2 and C'(0)x=0, then {C(t); t € R} is a cosine family on X and
A is its infinitesimal generator.

Proof of Theorem. Assume that A is the infinitesimal generator
of a cosine family {C(¢); te R} on X. Let z, ¥ ¢ X and let w be given
by (2). It is easily shown that w e C([0, T]; X). We want to show
that w is a weak solution of (IV; x,%). Letve D(4*). By (vi), for
every t ¢ [0, T]

R (CE + s —C()), v>=<A<h“ j " Ss)e ds), v>
:<h—1 ﬁ" S(s)e ds, A*v>——><S(t)x, A%

as h—0,
i.e., (d/dt)<C(t)x,v)>=<S®t)x, A*v>. Noting (d/dt) j:S(t—s)g(s)ds
=r C(t—s)g(s)ds, we have

(@A) w(d), v>=(SE)x, A*v) +(C(E)y, fv>+j: (C(t—8)g(s), v>ds
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for te[0,T1. Since Ct—s)g(@®=g()+4 [ S@g@do by (vi),
(d/dt)lw(t), v>={SE)x, A*v>+(C(t)y, v>
+ [ <o@, vas+ [[[[! ¢s—9)96), A*v>do]as
={S@®)z, A*v>+{C(t)y, v)>
+J: UO (Sla—9)g(s), A*v>ds]do +f <g(s), v)ds

fort e [0, T]. Thisimpliesthat (d/dt)<{w(t), v} is absolutely continuous
and

(d@*/ dt)w(t); vy =<Ct)x, A*v)y+{S(t)y, A*v)
+ [ <St—9)9(s), A*vyds-+<g(t), v)
={w(t), A*v>+{g(t), v> for a.e.t € [0, T'].
Moreover w(0)=x and (d/dt)<w(t), v>|;-e=<Y,v>. Therefore w is a
weak solution of (IV; «,%). To prove that w is the only weak solution

of (IV; x,y), let w(t) be another weak solution of (IV; x,v) and set
Uu=w—w. Then u(0)=0 and

@/ dt)ult), v> =j: Culs), A*v>ds
for all ve D(A*) and £ € [0, T]. Consequently

Qu(®), o> =<L Uo u(a)do] ds, 4*0)

for all veD(A*) and te[0,T]. Putting 2(t)= j‘ U u(o)do]ds for
0 0

tel0, T, 2(t) € D(A) and Az(t)=u(t) by Lemma 1, and hence z”(¢) =Az(¢)
for ¢t € [0, T1 and 2(0)=2'(0)=0. It follows from (vii) that 2(£)=0, i.e.,
w(t)=w(t) for all t [0, T].

Suppose that A is such that (IV; «, ¥) has, for each pair [z, y] e X
x X, a unique weak solution. Let w(t; ) be the weak solution of
{AV;2,0). For xecX and tc R, define C(t)x by

Cl)x=w(t; x)—w(t; 0) if t [0, T,
CT +8)x=2C(nTYC(s)x—C(nT —s)x if se(0,T] and n=1,2, .-,
Ct)x=C(—t)x if ¢<0.

Note that

(3) j:U:C(a)xdo]dseD(A) and C(t)x—x:AJ:U:C(a)wdo]ds

for all xe X and te[0,7T]. In fact, it follows from the definition of
C(t) that for every v e D(4%), (d?/dt){C(t)x, v>=LCt)x, A*v) for a.e.t
¢[0,T]. By integrating this equation twice and then by using Lem-
ma 1, we obtain (3). Now let us prove that {C(¢); ¢ ¢ R} satisfies the
hypothesis of Lemma 2. To prove the linearity of C(t) for t €[0, T1,
let , B be a scalars and let x,y e X. Set

ut)=aw(t; ©)+pwt; Y +QA—a—pPwE;0)  for tel0, T1.
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Then « is a weak solution of (IV; ax+gy,0). By the uniqueness of
weak solutions, we have u(t)=w(¢; ax+py) and hence C(¢): X—X is
linear for every ¢ e[0,T]. Define a map 6: X—C(0, T]; X) by 6(x)
=C(.)x for x ¢ X. To prove that @ is closed, let z,—« in X and 6(x,)
=C(),—e in C(0, T]; X). Since C(t)xn=xn+Aj: U ), da]ds by
(3), it follows from the closedness of A that

j: Uo go(a)do] dseD(A) and ot)=z+A j: Uo go(o)do‘] ds

for t € [0,T]. Hence ¢(t)+w(t; 0) is a weak solution of (IV; x,0), and
then ¢(t) +w(t; 0)=w(t; x) for ¢t € [0, T], i.e., o=C(-)z, by the unique-
ness of weak solutions. By virtue of the closed graph theorem, 6 is
bounded and |C(®)x||<]|6| ]| «] for every x € X and ¢t € [0, T]. Thus, by
the definition of C(¢), {C(?); t € R} is a one-parameter family in B(X)
such that C(t)x: R—X is continuous for every x ¢ X. We next show
that (a) is satisfied. To this end, let x ¢ D(4). By (3), we have

(4) C(t)x—x_—.Aj: UO Clo)x da]ds,

t s
(5) CHAz—Ax=A L U Clo)Ax do]ds
0
for t e [0,T]. Consider the function
13 S ¢ s
z(t):L Uo C(0)Ax da] ds—A L Uo Clo)w da] ds  for tel0, Tl
Since C(-)x € C([0, T1; X), it follows from (4) that z ¢ C([0, T]; X). Let

ve D(A%). Then <z(t), ”>=<LU0 C(o)Ax do] ds, v>—< j 0 Uo Co)x do] ds,

A*v> is twice continuously differentiable in ¢<[0, T1, 2(0)=0 and

(d/dt)<z(@t), vD|;.o=0; and (d*/dt)<{z(t), v>=<z(t), A*v) for all t [0, T]
by (4) and (6). By the uniqueness of weak solution of (IV; z,¥), we
see that z(t)=0 for all t [0, T]. Combining this with (4), we have

(6) CH)m=x+ L UO C(0)Aw do]ds for t ¢ [0, T];

and hence C(t)x € D(A) for all ¢t €[0,T], and then C(t)x ¢ D(A) for all
te R. Finally, to see that (b) is satisfied, let x ¢ D(A). It follows
from (6) and the definition of C(¢) that C(¢)x: R—X is twice continu-
ously differentiable, C(0)x=x, C’(0)x=0 and C”(t)x=C(t)Ax for t ¢ R.
Moreover, by (5) and (6), Ct)Ax=AC(t)x for t ¢ R. Using Lemma 2,
{C(®); t e R} is a cosine family on X and A is its infinitesimal genera-
tor. Q.E.D.
Remarks. Let w(f) be a weak solution of (IV; z, ).

1) SetE= {t [0, T1; (d /dt)r g(s)ds= g(t)}. Then E is a null set.

Integrating (1) we have
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@/ dt)w(d), v>— (v, v>=< f : w(s)ds, A*v>+<I: 9(s)ds, v>

for all v e D(A*) and £ [0, T]. Hence for every v ¢ D(A¥)
(@] dtrH<w(t), vy =<w(t), A*v>+{g@), v)> for t e [0, TI\E.

2) Suppose that w(t) is twice weakly differentiable for a.e.t
€[0,T]. By 1), there exists a null set £ ([0, T]) independent of v
such that

{(w—d*/ dtHw(t), v~>=<w(t), A*v>+g@), v
for all ve D(A*) and t € [0, TI\E. Now, using Lemma 1, we obtain
w() e D(A) and (w—d?/dtHywt)=Aw(Et)+g(t) for a.e.t € [0, T1.
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