25. On the Lax-Mizohata Theorem in the Analytic and Gevrey Classes

By Tatsuo Nishitani
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., June 14, 1977)

1. Introduction. In this paper, we consider the non-characteristic Cauchy problem for the differential operators with analytic or Gevrey coefficients.
L. Boutet de Monvel and P. Krée [2] showed some fundamental properties of analytic and Gevrey symbols of pseudo-differential operators. In [1], L. Hörmander has localized the pseudo-differential operators with analytic symbols in a suitable way on the dual space to extend the regularity and uniqueness theorems, and to study the propagation of the singularities.

Here, using this localized differential operator, we shall give a some necessary relation between the admissible initial data and the number of real roots of the characteristic equation. And, as application of this relation, we extend the Lax-Mizohata theorem to the analytic and Gevrey classes.

A forthcoming paper will give the detailed proof.
2. Definitions and results. Let V be an open set in R^{m}, we shall denote by $\gamma^{(s)}(V)(s \geqslant 1)$ the set of all $f \in C^{\infty}(V)$ such that for every compact set $K \subset V$, there are constants C, A with

$$
\begin{equation*}
\left|D^{\alpha} f(x)\right| \leqslant C A^{|\alpha|} \alpha!^{s}, \quad x \in K \tag{2.1}
\end{equation*}
$$

for all multi-indexes α. Let $p\left(x, t ; D_{x}, D_{t}\right)=D_{t}^{m}+\sum_{j=1}^{m} a_{j}\left(x, t ; D_{x}\right) D_{t}^{m-j}$ be a differential operator with coefficients in $\gamma^{(s)}(W)$, where W is a neighborhood of the origin in R^{n+1}, the order of $a_{j}\left(x, t ; D_{x}\right)$ is less than j, and

$$
D_{t}=\frac{1}{i} \frac{\partial}{\partial t}, \quad D_{x}=\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}, \cdots, \frac{1}{i} \frac{\partial}{\partial x_{n}}\right), \quad x=\left(x_{1}, \cdots, x_{n}\right) .
$$

We shall denote by $p_{0}(x, t ; \xi, \lambda)$ the principal symbol of $p\left(x, t ; D_{x}, D_{t}\right)$.
Theorem 2.1. Suppose that $p_{0}(0,0 ; \hat{\xi}, \lambda)=0(|\hat{\xi}| \neq 0)$ has μ real and ν non-real roots $(\mu+\nu=m)$, and u is a C^{∞}-solution of the equation $p\left(x, t ; D_{x}, D_{t}\right) u=0$ defined in a neighborhood of the origin such that $D_{t}^{j} u(x, 0)=0$ for $0 \leqslant j \leqslant \mu-1$. Then $(0, \hat{\xi})$ is in the complement of wave front set $W F_{s}\left(D_{t}^{\mu} u(x, 0)\right)$, i.e. there are a neighborhood U of 0 , a conic neighborhood Γ of $\hat{\xi}$, and a bounded sequence $u_{N} \in \mathcal{E}^{\prime}\left(R^{n}\right)$ which is equal to $D_{t}^{\mu} u(x, 0)$ in U such that

$$
\begin{equation*}
\left|\hat{u}_{N}(\xi)\right| \leqslant C\left(C N^{s}\right)^{N}|\xi|^{-N} \tag{2.2}
\end{equation*}
$$

is valid for some constant C when $\xi \in \Gamma$.
Consider the following problem
$(\mathrm{P})_{\mathrm{k}}$

$$
\left\{\begin{array}{l}
p\left(x, t ; D_{x}, D_{t}\right) u=0 \\
D_{t}^{j} u(x, 0)=u_{j}(x) 0 \leqslant j \leqslant k-1(k \leqslant m),
\end{array}\right.
$$

then by the Theorem 2.1, we have
Corollary 2.1. If the problem $\left(\mathrm{P}_{\mathrm{k}}\right.$ has a C^{∞}-solution in a neighborhood of the origin for any given $\left(u_{0}(x), \cdots, u_{k-1}(x)\right) \in \prod^{k} C^{\infty}\left(R^{n}\right)$, then $p_{0}(0,0 ; \xi, \lambda)=0$ must have more than k real roots for every $\xi \neq 0$.

We shall say that the Cauchy problem (P$)_{\mathrm{m}}$ is $\gamma^{(s)}$-well posed in a neighborhood of the origin ($s>1$), if there exists a neighborhood D of 0 in R^{n+1} such that the problem

$$
\left\{\begin{array}{l}
p\left(x, t ; D_{x}, D_{t}\right) u=0 \text { in } D \tag{2.3}\\
D_{t}^{j} u(x, 0)=u_{j}(x) 0 \leqslant j \leqslant m-1, \text { in } D \cap(t=0)
\end{array}\right.
$$

has a unique solution $u \in C^{\infty}(D)$ for any given initial data ($u_{0}(x), \cdots$, $\left.u_{m-1}(x)\right) \in \Pi^{m} \gamma^{(s)}\left(R^{n}\right)$. Then Theorem 2.1 and the Baire's category theorem show

Theorem 2.2. Let s be >1. Then, for the Cauchy problem $(\mathrm{P})_{\mathrm{m}}$ to be $\gamma^{(s)}$-well posed in a neighborhood of the origin, it is necessary that $p_{0}(0,0 ; \xi, \lambda)=0$ has only real roots for any $\xi \neq 0$.

Theorem 2.3 (c.f. [4]). Suppose that $s=1$, and $p_{0}(0,0 ; \hat{\xi}, \lambda)=0$ $(|\hat{\xi}| \neq 0)$ has at least one non-real root. Then there exists an open neighborhood U of the origin in R^{n} such that for any open neighborhood W of 0 in R^{n+1} satisfying $W \cap(t=0)=U$, there is an analytic initial data on U for which the solution of the Cauchy problem $(\mathrm{P})_{m}$ cannot be continued analytically whole in W.
3. Proof of Theorem 2.1. Let W be an open set in R^{n+1}, and Γ be a conic set in $R^{n+1} \backslash 0$. We write $y=(x, t), \eta=(\xi, \lambda)$ and $|\eta|^{2}=|\xi|^{2}+|\lambda|^{2}$. Following [2], we shall say that the formal sum $p=\sum_{k=0}^{\infty} p_{k}(y, \eta)$ is a symbol on $W \times \Gamma$ of class s with order (r, t), if each $p_{k}(y, \eta)$ is a smooth function on $W \times \Gamma$, homogeneous degree $r+t-k$ with respect to η and there exists constants C, A such that for any integer k, any multiindexes α, β, and any $(y, \eta) \in W \times \Gamma$, the following inequality holds

$$
\begin{equation*}
\left|p_{k(\alpha)}^{(\beta)}(y, \eta)\right| \leqslant C A^{k+|\alpha+\beta|}|\eta|^{t}|\xi|^{r-k-|\beta|}(k+|\alpha|)!^{s} \beta!, \tag{3.1}
\end{equation*}
$$

where

$$
p_{k(\alpha)}^{(\beta)}(y, \eta)=\left(\frac{1}{i} \frac{\partial}{\partial y}\right)^{\alpha}\left(\frac{\partial}{\partial \eta}\right)^{\beta} p_{k}(y, \eta) .
$$

Lemma 3.1. Suppose that $p_{0}(0,0 ; \hat{\xi}, \lambda)=0(|\hat{\xi}| \neq 0)$ has μ real and ν non-real roots $(\mu+\nu=m)$. Then there are a neighborhood W of 0 in R^{n+1}, a conic neighborhood Γ of $\hat{\xi}$ in $R^{n} \backslash 0$ and symbols $a^{j}(1 \leqslant j \leqslant \mu)$, $b^{i}(1 \leqslant i \leqslant \nu)$ on $W \times(\Gamma \times R)$ which are independent of λ, of class s with order $(j, 0),(i, 0)$ respectively, and satisfy the equation

$$
\begin{equation*}
p(x, t ; \xi, \lambda)=\left(\lambda^{\mu}+\sum_{j=1}^{\mu} a^{j}(x, t ; \xi) \lambda^{\mu-j}\right) \circ\left(\lambda^{\nu}+\sum_{i=1}^{\nu} b^{i}(x, t ; \xi) \lambda^{\nu-i}\right) \tag{3.2}
\end{equation*}
$$

as symbols on $W \times(\Gamma \times R)$ (for the composition of symbols, see [2]). Here, $\lambda^{\mu}+\sum_{j=1}^{\mu} a_{0}^{j}(0,0 ; \hat{\xi}) \lambda^{\mu-j}=0, \lambda^{\nu}+\sum_{i=1}^{\nu} b_{0}^{i}(0,0 ; \hat{\xi}) \lambda^{\nu-i}=0$ has only real and non-real roots respectively.

Corollary 3.1. Under the same condition in Lemma 3.1, there exists a neighborhood W of 0 in R^{n+1}, a conic neighborhood Γ in $R^{n} \backslash 0$ and symbols q, r on $W \times(\Gamma \times R)$ which satisfy the followings, i.e. $p \circ q$ $=r$, where $r=\lambda^{\mu}+\sum_{j=1}^{\mu} a^{j}(y, \xi) \lambda^{\mu-j}$ is the same one in Lemma 3.1 and q is of class s with order $(0,-\nu)$. Moreover, for $k+|\beta| \geqslant 1,(y, \eta) \in W$ $\times(\Gamma \times R)$, the inequality
(3.3) $\quad\left|q_{k(\alpha)}^{(\beta)}(y, \eta)\right| \leqslant C A^{k+|\alpha+\beta|}|\eta|^{-\nu-1}|\xi|^{1-k-|\beta|}(k+|\alpha|)!^{s} \beta!$
holds.
Using Corollary 3.1, we can prove Theorem 2.1.

References

[1] L. Hörmander: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Comm. Pure Appl. Math., 24, 671-704 (1971).
[2] L. Boutet de Monvel and P. Krée: Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier Grenoble, 17, 295-323 (1967).
[3] S. Mizohata: Solutions nulles et solutions non analytiques. Jour. Math. Kyoto Univ., I-2, 271-302 (1962).
[4] H. Komatsu: Irregularity of characteristic elements and hyperbolicity. At the Conference on Structure of Solutions of Partial Differential Equations at RIMS on October 24 (1975).

