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1. Introduction. In this paper, we consider the non-character-
istic Cauchy problem for the differential operators with analytic or
Gevrey coefficients.

L. Boutet de Monvel and P. Kre [2] showed some fundamental
properties of analytic and Gevrey symbols of pseudo-differential
operators. In [1], L. HSrmander has localized the pseudo-differential
operators with analytic symbols in a suitable way on the dual space to
extend the regularity and uniqueness theorems, and to study the propa-
gation of the singularities.

Here, using this localized differential operator, we shall give a
some necessary relation between the admissible initial data and the
number of real roots of the characteristic equation. And, as applica-
tion of this relation, we extend the Lax-Mizohata theorem to the
analytic and Gevrey classes.

A forthcoming paper will give the detailed proof.
2. Definitions and results. Let V be an open set in R, we shall

denote by .(V)(s>l) the set of all f e C(V) such that for every
compact set Kc V, there are constants C, A with
(2.1) ]Df(x) <CAIIo: !, x e K,
for all multi-indexes . Let p(x, t D, D)--Dq-= a(x, t D)D-
be a differential operator with coefficients in .(W), where W is a
neighborhood of the origin in R+, the order of a(x, t; D) is less than
], and

D_I Dx=(1 1 3 ), x=(xl,...,x).i at’ T
We shall denote by po(X, t; , ) the principal symbol of p(x, t D, Dr).

Theorem 2.1. Suppose that p0(O, O; , )=0 (11:0) has g real and
non-real roots (l+,=m), and u is a C-solution of the equation

9(x, t; D,Dt)u--O defined in a neighborhood of the origin such that
Du(x, 0)=0 for O<]<g--1. Then (0, ) is in the complement of wave
front set WF(Du(x, 0)), i.e. there are a neighborhood U of O, a conic
neighborhood F of , and a bounded sequence u e ’(R) which is equal
to Du(x, O) in U such that
(2.2) i()]<C(CN)v



No. 3 Lax-Mizohata Theorem 89

is valid for some constant C when e F.
Consider the following problem

(p) p(x, t D, Dt)u= 0
Du(x, O)=u(x) 0<]< k-- 1 (k<m),

then by the Theorem 2.1, we have
Corollary 2.1. If the problem (P) has a C-solution in a neigh-

borhood of the origin for any given (Uo(X), ..., u_(x)) e C(R), then
p0(0, 0;, 2)=0 must have more than k real roots for every 0.

We shall say that the Cauchy problem (P) is y(’)-well posed in a
neighborhood of the origin (s> 1), if there exists a neighborhood D of
0 in Rn+ such that the problem

(2.3) p(x, t; D, Dr)u=0 in D
[D[u(x, O)=u(x) O]m--1, in D (t=O)

has a unique solution u e C(D) or any given initial data (Uo(X),...,
u_(x))e y()(R). Then Theorem 2.1 and the Baire’s category
theorem show

Theorem 2.2. Let s be 1. Then, for the Cauchy problem (P)
to be ()-well posed in a neighborhood of the origin, it is necessary that
p0(0, 0; , 2)=0 has only real roots for any 0.

Theorem 2. (c.L [4]). Suppose that s=l, and p0(0,0; ,2)=0
(#0) has at least one non-real root. Then there exists an open
neighborhood U of the origin in Rn such that for any open neighbor-
hood W of 0 in Rn+ satisfying W (t=0)=U, there is an analytic
initial data on U for which the solution of the Cauchy problem (P)
cannot be continued analytically whole in W.. Proof of Theorem 2.1. Let W be an open set in R
be a conic set in R+0. We write y=(x, t), =(, ) and
Following [2], we shall say that the formal sum P=7=0 P(Y, ) is a
symbol on W F of class s with order (r, t), if each p(y, ) is a smooth
function on W F, homogeneous degree r+ t-- k with respect to and
there exists constants C,A such that for any integer k, any multi-
indexes a, fl, and any (y, )e W F, the following inequality holds
(3.1) ]() (y. )j<CA+.+ j]t j--, (k+])
where

(.) P(Y,).

Lemma .1. Suppose that p(O, O; , )=0 (0) has real and
non-real roots (Z+,=m). Then there are a neighborhood W of 0 in

R+, a conic neighborhood F of in RO and symbols a (l]p),
b (1i,) on W (F R) which are independent of , of class s with
order (], 0), (i, O) respectively, and satisfy the equation
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as symbols on W(FR) (for the composition of symbols, see [2]).
Here, + ,:1 a0(0, 0 )-=0, + .__1 b(0, 0 )-=0 has only real
and non-real roots respectively.

Corollary 3.1. Under the same condition in Lemma 3.1, there
exists a neighborhood W of 0 in R/, a conic neighborhood F in R\O
and symbols q, r on W (F R) which satisfy the followings, i.e. p q
=r, where r--+-_1 a(y, ),-J is the same one in Lemma 3.1 and q
is of class s with order (0,--,). Moreover, for k+l[>l, (y,])e W

(F R), the inequality

Tc(a)

holds.
Using Corollary 3.1, we can prove Theorem 2.1.
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