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It is well known that if a real function f f(x) belongs to the class
L’---- L(0, 2), p 1, then so does also its conjugate function f, and both
of their Fourier series S(f) and S(f) converge in (the metric of) L.
Similarly, if f e L-L and if 0pl, then we have f e L and f e L,
and their Fourier series S(f) and S(f) again converge in L, though in
this case the class L is not a metric space. When p--1, however, the
situation becomes different, as was first noticed by F. Riesz (cf. e.g. [1-II
Chap. VIII, 22]) who gave a counterexample showing that in the metric
space L we cannot expect a corresponding result to hold true. ) Actual-
ly, he constructed a function f e L and its conjugate f e L such that
both S(f) and S(f) unboundedly diverge in L, that is,

lim sup S lim sup S + co

which implies that
lim sup f--S lim sup f--S + c,

where S=S(x) and S=S(x) denote the n-th partial sums of S(f) and
S(fi), respectively, and where designates the ordinary L-norm
(over the interval (0, 2)).

In the present article we shall be concerned with the problem of
the convergence and divergence in L of Fourier series of sines and of
cosines, with quasi-convex coefficients. Our primary aim is to prove
Theorem 1 below, the proof itself of which is entirely of elementary
and constructive character.

1. Theorems. Let (c) be an infinite sequence of real numbers.
The sequence (c) is said to be of bounded variation, if it satisfies the
condition :-_lIc] +co, where lc-c-c+, and (c)is quasi-con-
vex, if :; n Izlcl + c, where Ac=Ac-Ac+ a bounded, quasi-
convex sequence (c) is of bounded variation.

Theorem 1. We can find an infinite, quasi-convex null sequence
(Cn) of non-negative real numbers such that the series

( 1 ) ] c sin nx

1) This notwithstanding, it is true that if a trigonometric series converges
in L to a function f e L, then it is the Fourier series of the function f (cf. [1-I;
Chap. I, 12]).



No. 2] Convergence in L of Some Fourier Series 73

and

2 ) c cos nx

are the Fourier series of a function f e L and its conjugate f e L
respectively, but they do diverge in L boundedly, or unboundedly as
well.

Our proof of this theorem is based upon the following Theorems 2
and 3 which may deserve an independent interest.

Theorem 2. Let (c) be a bounded, quasi-convex sequence of real
numbers. Then the sine series (1) converges in L if and only if

and
(4) Icl log n-O as n--.c

Theorem :. Let the sequence (c) be as in Theorem 2, and let S
--S(x) denote the n-th partial sum of the sine series (1). Then we have
( 5 lim sup S < /
if and only if there hold (3) and in addition
( 6 ) lim sup Cn log n< /

Proofs of Theorems 2 and 3 depend essentially upon the following
two Theorems T and G.

Theorem T [7; Theorem 1]. Let (c) be a quasi-convex null
sequence of real numbers. Then the series (1) is the Fourier series of
a function f e L if and only if the condition (3) is satisfied.

Theorem G [3; Theorem 5.3]. Let (c) be a eal sequence of
bounded variation. Then the series (1) is a Fourier-Stielt]es series if
and only if it is a Fourier series. The same result holds true also for
the series (2), if the sequence (Cn) is further assumed o be a null
sequence.

Also, we shall make use of the following well-known theorem due
to W. H. Young and A. N. Kolmogorov (cf. [l-I; Chap. I, 30], [1-II;
Chap. X, 2], and [8; Chap. V, Theorem 1.12]).

Theorem YK. Let (c) be a quasi-convex null sequence of real
numbers. Then the series (2) is the Fourier series of a function j e L..
It converges in L to f if and only if the condition (4) is fulfilled. The
L-norm of the n-th partial sum Sn(x) of (2) is bounded if and only if the
inequality (6) holds.

We are now in a position to prove Theorems 2 and 3.
Proof of Theorem 2. The ’if’ part: Suppose that the conditions.

(3) and (4) are satisfied. By Theorem T, the condition (3) together with
the fact that c-*0 as n-.c, which is a consequence of (4), implies that.
the series (1) is the Fourier series of an f e L. On the other hand,
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owing to the quasi-convexity of (c), the series (2) is the Fourier series
of an f e L and it converges in L by Theorem YK, on account of (4).
Hence the series (1) also converges in L (cir. [1-II Chap. VIII, 22]).

The ’only if’ part" Suppose that the series (1) converges in L. Then
(1) is the Fourier series of an f e L. Hence, again by Theorem T, the
condition (3) is satisfied. On the other hand, since (c) is by assump-
tion a quasi-convex sequence, (2) is the Fourier series o an f e L,
whence ollows the convergence in L of the series (2). This implies (4).

Proof of Theorem 3. We shall give a proo o the ’only i’ part
alone, as the proof of the ’if’ part is entirely parallel to that part of
the proo o Theorem 2. So suppose that the inequality (5) holds.
First we observe that (5) implies that (1) is a Fourier-Stieltjes series
(el. [l-I; Chap. I, 60]). Then, by Theorem G, (1) is in act a Fourier
series, and it ollows rom this fact that (c) is a null sequence. Thus,
(3) must hold by Theorem T. That (6) also holds will easily be seen
just as in the proof of the ’only if’ part o Theorem 2 above.

2. Constructing sequences. We are now going to prove Theorem
1. In view o Theorems 2 and 3, and of Theorem YK as well, it will
obviously suffice to construct a quasi-convex null sequence (c) of non-
negative real numbers that satisfies the condition (3) and either of the
conditions
( 7 ) lim sup c log n---1

and
( 8 ) lim sup c log n= + c.

Existence of such a sequence (c) with (8) will show that, for a null
sequence (c), the quasi-convexity of (c) and the condition (3) do not
necessarily imply the condition (6) or, afortiori, the condition (7).

Now, taking real numbers a,/ and , with a>0 and.)1, we set
n= [exp (m log" m)], k,=[n/log-rm] (m> 1),

where [t] denotes the greatest integer not exceeding the real number t;
we have then

k,0, n 2k,, n/--n, k+k/+2 or m>=mo,
provided m0--m0(a, fl, ’) 2 is chosen large enough. Define

m log m n.m logr m
or n--n, + k, Ikl<=k (m>=mo)

and
c 0 or all other n >__ 1.

It is clear that c__> 0 for all n, c--.0 as noc, and c 1/(n. logr m) or

We have c=0 unless n--n-k--2, n--k--l, n--l, n+k
--1 or n+k for some m_>_ m0, and or these exceptional values o n
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Hence
nm.m log m

with A- 1 or 2.

] n tzlCnl<= 1 {(n-k--2)+2(n--k--l)
-o nm.m log m
+2(n- 1) + 2(n+k-1) + (nn + k)}

18 +.
Zo m log m

This proves the quasi-convexity of the sequence (c) de.fined above.
Next, we have

n zm n--k mlogm zm mlogm
which confirms (3).

Finally, we have or m m0

sup c logn 1 log n 1
nnm m log m

lg"-m

and so, if we have chosen afl then
lira sup c log n +

which is (8). One may easily verify that, in order to realize (7), it is
simply enough to take a= ab ovo.

This completes the proof of Theorem 1.. Remarks. It might be remarked that our Theorems 2 and 3
were in a sense well-presented ones, which could be seen from the
observations that follow. As a matter of fact, the following result is
classical and is well known (cf. [2; 5, p. 26]).

Theorem A. If (c) is an infinite sequence of real numbers such
that

( 9 ) ]ACn] log (n+l)+ and cO as no,

then both of (1) and (2) converge in L, and hence they are the Fourier
series of some functions belonging to L.

On the other hand, it has been stated without proof by S. Szidon
[6] (see also [5; Chap. VIII, 403]) that one has

Theorem Sz. If (c) is a real sequence satisfying

(0) (c og (n+ ))< +,
then the cosine series (2) is a Fourier series.

Here, G. Goes [4] has shown, among other things, that the con-
dition (9) is equivalent to

[3(clog(n+l))[<+ and .]c].<+.
n=l n=l n

Thus, the condition (10) is truly weaker than (9). We note that, in the
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case of sine series (1), (10) ceases to be a sufficient condition for (1)
being a Fourier series, as is readily seen from the well-known example
with (c)=(1/log (n/ 1)).

It is known that the condition (9) implies both of (3) and (4) (cf.
[2; Theorem 5.1]). Therefore, in order to show that our Theorem 2,
the ’if’ part thereof, is indeed not contained in Theorem A, we must
prove that the converse" "the condition (3), together with (4), implies
(9)", does not hold2 in general. We shall demonstrate this by an ex-
ample.

If we take >0, ,>1, in the definition of the sequence (c)
in 2, then we get again a quasi-convex null sequence (c) of non-
negative real numbers for which not only the condition (3) but also the
conditions
(11) c log n-*0 as
and

(12) Izl(cn log (n
n=l

are satisfied; here, as is easily seen, (12) is equivalent in this case to

(13) ] Acn log (n H- 1)-- co.

In fact, it will suffice to verify (11) and (12) for our (c,). Now, (11) is
obvious since a<, and we have for m>-mo---mo(o,

2 O( 1 .);IZlCn] log (n+ 1)=
log-" m m log m

on summing this up over m>=mo, we obtain (13) and hence (12). We
have thus proved that, for a quasi-convex sequence (c=) of real numbers,
the conditions (3) and (4) do not necessarily imply the condition (9).
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