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3. Studies on Holonomic Quantum Fields. I

By Mikio SAT0, Tetsuji MIWA, and Michio JIMB0

(Communicated by K.Ssaku YOSIDA, M. ff.A., April 12, 1977)

To understanding the mathematical structure of quantized fields
or systems with infinite freedom, non trivial but exactly calculable
models would be of great help [1]. In this and subsequent notes we
present, both in the continuum and in the lattice, 2-dimensional soluble
models of neutral scalar massive field theory whose r-functions exhibit
a non trivial singularity structure.

In the present article we deal with the continuum case. We in-
troduce an auxiliary free fermi/bose field and construct the field
operator by specifying its induced rotation in the space of wave func-
tions. Making use of the "theory of rotation" (2 cf. [2]) developed
recently by the first author, we express this field operator in the normal
product form of these free fields. We also calculate the asymptotic
fields and the S-matrix of the field defined in 3. Next we give ex-
plicit formulae for r-functions of these models and study their holonomy
structure.

The lattice field theory will be discussed in a subsequent paper.
Specifically we shall show that our model 9/9 coincide with the scaling
limit of the Ising model from above/below the critical temperature.
Main part of these results has been announced in [3].

We use the following notations. The space-time and the energy-
momentum co-ordinates are denoted by x=(x, x) and p__(pO, p). We
also use x+/-=(x+_.xl)/2 and p=p0+_pl. The mass-shell {p e R21p2=(p)
--(p)=m2} (m>0) is denoted by M. For p e M we set u+/---p+/m,
du--du/2ful.

1. Let +(u)* and +(u) (u>0) be the creation and annihilation
operators of auxiliary fermion. If we define +(u) +( u)* for u<0,
their anti-commutation relation reads [+(u), q(u’)]+ =2z lul (u+u’).
Likewise we define auxiliary bosons (u) with the commutation relation
[(u), (u’)]_=2zu((u+u’). In two dimensional space-time these two
are in fact equivalent. Namely

(1) q+(u)= ",(u)exp .[[ (--2)(+_(,u[--u’))4(u’)tg’(u’)du’"

satisfy the commutation relation [q (u), (ug]_ =2zua(u+ u’), and con-
versely (u) is given by

(2) (u)=" (u)exp foo (--2)t(-+-([ul--u’))(u’)’:(ugdu".
do
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2. We let W denote an orthogonal/symplectic space, a vector
space equipped with a non-degenerate symmetric/skew-symmetric inner
product (w, w’. First consider the orthogonal case and denote by
A(W) the enveloping algebra (Clifford algebra) over W with defining
relation [w,w’]+---(w,w’. G(W) denotes the Clifford group {g
e A(W) I_g-, gWg---W}. Let gg* denote the anti-automorphism
of A(W) characterized by w*--w for w e W. Set n(g)--g*g.=-gg* for
g e G(W), and gn(g) will define a group homomorphism G(W)---.GL(1).
Let W--VV be a decomposition into two holonomic subspaces.
This means that there exist a basis --() of V and basis --()
of V such that (+*,, +*}=0, (q,, +}=0 and (q,*,, +}=. Then A(W)
is a semi-direct product of two exterior algebras A(V*) and A(V),
and a A(Vt)-A(V)-isomorphism N: A(W) A(V*) A(V)- A(W)=A(V*)
AA(V) such that N(1)=I is determined uniquely. The image N(g)
e A(W) we call the norm of g. (In physicists’ notation g= N(g): .)
For g e G(W) Ta w e Wgwg- e W is a rotation, an isomorphismwhich

( T) Firstpreserves the inner product. Let T(+*, +)=(+*, +) T
T3 T4

assume that T is invertible. Then we have the following expression
of the norm of g.
( 3 ) N(g) (g) exp ((1/2)+*T2T;+ + +*(T;-1)+(1/2)+T;T),where n(g)=(g) (det T)-, and we regard +*, + as elements of A(W).
Next we assume that dim Ker T,--1, and choose +o* e V*, +0 e V and
w e G(W) W such that Tq+0--+*o, w-1 and (w, +*o)--1. Then (Twq)
is invertible and
( 4 ) N(g) +*oN(wg) + N(wg)+o.
Here we regard +o* and q0 as elements of A(W).

Next consider the symplectic case, and define A(W), G(W), etc.
with due modifications. In particular w*--iw for w e W, and the
norm of g e A(W) is defined as an element of the symmetric tensor
algebra S(W). Assuming that T is invertible, we have
( 5 ) N(g)--<g> exp ((1/2)*(-- T2TI)t*+*(T;I-1)t+(1/2)TrT*),
with n(g)=<g> det T.

3. Let now W be the space of wave functions w(x)=(w/ (x), w_(x))
satisfying the Dirac equation 3w+(x)/x+/--;-mw(x)=O. An orthogonal

structure is introduced to W by defining (w,w’}= dx(/(x)w/(x)

+w_(x)w’_.(x)). Ifwe identifyw e Wwiththe operator dx(w/(x)/(x)

+w_(x)p_(x)), where +/-(x)=[/du__..#o+iU+lp(u) exp (--im(x-u
,J

+ x/u-)), the Clifford algebra A(W) is nothing but the operator algebra
o free ermions. We choose as V*/V the set of creation/annihilation
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operators in W. Set W2={w e WIw(x’)-O if (x’-x)O, x’l-x0},
and we shall have W=W+W;, an orthogonal decomposition. We
now introduce our field operator (x) e A(W) by specifying its induced
rotation T() with the property T()-1 by
( 6 ) T()(w+ + w-)--w+--w-, w e W.
Applying the ormula (3) to the present situation and choosing
=1 we obtain the following expression or +(x)
( 7 (x)---- exp L(x)"

where L,(x)--(1/2);: dudu’ --i(u--u’) +(u)(u’) ex, (--im(x-(u /u’)
u -4- u-iO

+x+(u- +u’-))). The micro-causality and the Lorentz covariance
+(x) are manifest in this approach.

We construct (x) and z(x) analogously, using the formulae in
the case dim Ker T--1 and in the symplectic case, respectively. In the
latter case we choose as W the solution space to the Klein-Gordon

equation and equip it with the inner product (w, w’}--i dxl(w(x)

3w’(x)/3x--3w(x)/3x.w’(x)). The results are
( 8 ) (x)= 0(x) exp L,(x)"

where 0(x) du(u) exp (--im(x-u+ x/u-)),

( 9 ) z(x)--" exp L(x)",

where L(x)=(1/2) dudu’
u+ u’--i0

(u)O(u’)

exp (--im(x-(u+ u’) + x/(u- + u’-))).
4. The asymptotic fields or are defined by

(10) (x) due+/- (u) exp (-ipx),

where +/-(u) lim if dx(q(x)(3/3x)exp(ipx)--(3/3x)(x)exp(ipx)).
t--*:t:oo .]O=t

We find that this limit coincides with (u) defined in 1. The asymptotic
states > are related to the auxiliary fermion states]> through the
formulae

<j

where du) stands for the signature o u. Accordingly the particle
number is conserved, and the S-matrix in the n-particle state is given

by (--)(-)/ times the identity operator, showing that the maximum
phase shift is attained in this model.

5. The n-point r-function of an operator (x) is expressed as 2o1-
lows"

n!

(12) rn(Pl, "", Pn)= , Tn-(Pl, P +P, "", Pl +"" +P-)
permutations

(2u)(p +... + P),
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where

Jo Jo

x ,+._,(u,, ..., u, -u_ , ..., -u_ ._)
j=l
-1

X 2(q] --mU)i(qT--mU + iO)-,
j=l

with U: u, U: u- and v0:v-0. The (anti-)symmetric
k=l k=l

functions are the matrix elements defined by ,(u, ..., u)-(--u+,

..,--u(O)u, ..., u) for u, ...,u)0 and u+, ..., u,<0. In
our models they are obtained from (7), (8) and (9).

(13) ,,(u,...,u,)=Pffian(iP u-u )UU 2,n

i/ p u--u (n even)

0 (n odd),
(4) u)(u, .., u) i, +(, u,

0 (n even)
i<_) p u-u (n odd),

and

.,
Uj U /,n

Here P(1/(u+ v)) denotes the principal value of 1/(u+ v), and for a sym-
metric matrix (a), we set Hanian(a)=0 or odd n and

’ aa,...a_, or even n, where the sum is taken over (n--1)
pairings o indices 1,..., n. In particular the (Euclidean) two point
unctions o and coincide with those obtained by [4] and [5].

The singularity/holonomy spectrum of r(p) is confined to the
union o positive-a/complex Landau singularities corresponding to
graphs with no internal vertices [6], where the number of (internal
and external) lines incident to each vertex is always even or and is
always odd for r, . On the leading singularity A, the order o r
or or is given by
(16) ord$r=n--N/2-- N(N-I)/2,

<
wheren denotes the number of vertices of G,N the number of internal
lines joining the vertices i and ], and N= N. Note that repulsive

<
effect o multiple internal lines is incorporated in (16).

Finally we remark that the generalized unitarity relation or the
r-function of
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__/()(--p+, ., --p u, ., u)
where we set r()(p, ., p u, ., u):r/(pl, ., p, ql, ", q)

)< I-[ (q--m)lqg: and bar denotes the complex conjugation, is direct-

ly and analytically verified by using our explicit formulae (12) and (14).

[1]

[2]
[3]

[4]

[5]
[6]

References

M. Sato: Proc. MN, Kyoto, 1975. Springer Lecture Notes in Phys., 39.
3eJ.

B. Kaufman: Phys. Rev., 76, 1232-1243 (1949).
M. Sato, T. Miwa, and M. Jimbo: Field theory of the 2-dimensional Ising
model in the scaling limit. RIMS preprint, 207 (1976).

T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch: Phys. Rev., B13,
316-374 (1976).

R. Z. Bariev: Phys. Left., 55A, 456-458 (1976).
M. Sato, T. Miwa, M. Jimbo, and T. Oshima: Holonomy structure of
Landau singularities and Feynman integrals (to appear in Publ. RIMS,
.1.2, suppl.).


