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8. On the Deuring-Heilbronn Phenomenon. II
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and Technology, Nihon University, Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

1. Quite recently two simple proofs of the Deuring-Heilbronn
phenomenon [4] have been obtained independently by the present author
[6] and Jutila [2]. Jutila’s proof can be much simplified by appealing
to the weight ¥',.(n) of [6]. But, compared with [2], the real advantage
of [6] is in its Lemma 4. To exhibit this, we prove here very briefly
a hybrid of two fundamental theorems of Linnik [3] [4] coupled with
further simplifications which are embodied in Lemmas 2 and 3 below
and which show that whole things are now reduced to a simple appli-
cation of the Selberg sieve. Similar simplifications are, of course, ap-
plicable to the former proofs of Linnik’s zero-density theorem [3].
Our new result is as follows:

Theorem. Let 1—§ be the exceptional zero of L(s,y), yu Teal
(mod q). And let N(a, T, x) denote the number of zeros of L(s,y)L(s
+3, ) in the region Re (8)=a, |Im (s)|<T. Then we have, for «a>3/4,
2 ) N, T, 1) < 5(og qT)(q T4 ®+o @-a/Ge=),

2 (mod ¢
This may not be the best exponent attainable by our method. A similar

but much weaker result can be found in [1; Théoréme 14], which was
obtained by the power-sum method of Turan. The large sieve exten-
sion can be proved quite similarly.
2. In what follows, B(n), g(r), G(R) are all defined in [6].
Lemma 1. Let

O f = 3 O,

u,v]=d
Then we have

S0 er=(Z0)(z ).

uln vin

Lemma 2. Let 7,=0(u(d)| d°) and let

F(s,x; 77)=§1 x(d)d >y, L]d <1+<X;§§’) _ x;c)ll(ﬁ) )

Then we have, for Re (s)>1,
5% 1) BO)( e )n~t =Lis, DL +3, 1)F (s, 15 7).
Lemma 3. Let
G, (R)= ;R ©(rg(r),

TS
(ryd)=1
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and let

0u=1d) ] (1—%)‘1(1— ’;;(” )Gau B DGR

1+6

Then we have |0, <|w(d)] and
Db (1 2D 0B ) =6
f
Lemma 4. We have
GR)=Zq'o(q)G(R), G(R)=(20)"'L(A+0d, ) +OR™/*+q /),
L(1+9, Xl) >a.
Lemma 5. Let M<N and let 0<Re (s)<1/2. Then we have

H(s, ) :g:l X(n)B(’ﬂ)(:L,; 6d)2n_1—s(e—n/1v — e

=EQq (L1406, )G (R) (M *—N~)I'(—s)
+OR* q(Is|+1)M "),
where E(p) =1 if y is principal and E(y)=0 otherwise and (M*—N"*%)
I'(—s) is defined to be log (N/M) if s=0.
Lemmas 1 and 2 are elementary. Lemma 3 is a special case of
the Selberg sieve. Lemma 4 can easily be proved by observing the
expression

2, At =L+ DL +1+8, 1) A,

where A(s) is bounded for Re (s)> —1 and A(0)=1. As for Lemma 5
we note that, by Lemmas 1 and 2, H(s, y) is a difference of two Mellin
transforms of L(s, Y)L(s+3, yx)F(s, x; 606) and that, if y is principal,
F1,y;0:0=G,(R)"" by Lemma 3.

3. Now we proceed as follows. By a familiar argument, it is
sufficient to consider the set {(p;, x¥)}, <J, such that L(p;, y*’)L(p; +4,
191 =0, Re (o) =q, |Im (p))|< T, and (p,, ) are (log ¢T)~* well-spaced.
Then, taking a Mellin transform of L(s, y)L(s+3, yx)F'(s, x; £ 6), where
& is defined in Lemma 4 of [6], we get, by Lemmas 1 and 2,

1<| > X(J)(n)B(n)(fZME g:f)(d% ad)n—nje-n/y

2SnSV1+s

Here we have to assume Y*=(9TRz2)'**. And then, by the Haldsz in-
equality [6; Lemma 1.7], we have
oo 2
<3 B@)(3 &) woe T 5 (Hipy+ou—2e, 771

n=1 JrksST
where H(s, y) of Lemma 5 is used with M=z""*, N=Y'"**. According
to Lemma 4 of [6], the first sum is O(Y?**~%), since B(n)<z(n) and
nitegn/¥ g Y2-ap=—s p—1+4(log Y)"!. As for the second sum we see,
by Lemma 5, that it is
LIq QLA+, 1)G(R) ' log Y 4 JPR*qTz~**.

Now we set R=¢q"?**, 21"*=qTR?*Y**" %, and thus Y* ?=(R%q*T?'*.
Then, by Lemma 4, we find
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JLY 95 log Y,

which ends our brief proof of the theorem.
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