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§ 1. Preliminaries. Let M be an n-dimensional compact connected
manifold. For a Riemannian metric g, let —4, be the Laplacian as-
sociated to g acting on smooth functions on M. We may use the con-
vention that the set of non-zero eigenvalues of 4, consists of the eigen-
values repeated a number of time equal to their multiplicities. For a
fixed positive integer k, let 4,(9), - - -, 2,(9) be k eigenvalues chosen as
small as possible. We consider the function 5, on the space of smooth
Riemannian metrics on M (cf. [1] p. 143):

E@=V 3k A
where V, is the volume of (M, g). For a fixed Riemannian metric g,,
let m(g,) be the multiplicity of the least positive eigenvalue 2,(g,) of 4,,.
The function £=454,,,, is called (cf. [1]) to be critical at g, if
| d g ] -
| L-2e®n] o

t=0
for every one-parameter family of Riemannian metrics g(t), g(0)=g,,
|t|<e, depending real analytically on ¢t.

§2. Statements of Results. Let K be a compact connected Lie
group, K, a closed subgroup of K and M=K/K, the quotient manifold.
Let g, be a K-invariant Riemannian metric on M. Then we have the
following results :

Theorem 1. Let M=K/K, be as above. Suppose that the linear
isotropy representation of K, is irreducible over R. Then the function
E is critical at the K-invariant metric g,.

Theorem 2. Let M=K/K, be the compact homogeneous space of
dim. M >2. In case of dim. M >2, we assume the linear isotropy repre-
sentation of K, is irreducible over R. Let g, be a K-invariant metric
on M. Then

E(pge) 2m(ge)"""'5(90),
for every positive valued smooth function ¢ on M such that {o"™? 7>,
=0 for every neF. Here ., >, 18 the L,-inner product on the space
of smooth functions on M and F is the A,(g,) eigenspace of 4,,.
Remark 1. The function ¢™* in Theorem 2 is given as follows,
for example: Let + be a smooth function orthogonal to & with respect
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to {+, >4 Then ¢ +c¢, (c>max. || is a positive valued smooth func-
tion orthogonal to F with respect to {-, ->,. We may put ¢"*=++c,
(e>max. ).

Remark 2. These theorems have been obtained by M. Berger [1]
in case of M =S".

§3. Proof of Theorem 1. Let {¢;}74” be an orthonormal base
of F with respect to <-, ->,. It may be proved that they satisfy the
Conditions 1 and 2 of Proposition 4.24 in [1] p. 143.

Condition 1. For ke K, the translations {k¢;}79” by k is also an
orthonormal basis of . Then > 74° (kp,)*=> 74" ¢}. Then the sum

g0 o2 is a constant function C on M by the homogenuity of K on M.
Integratmg over M, we have
CV =074 05 1), = 217517 | @allye = m(g0).
Here V, is the volume of (M, g,).

Condition 2. Since the isotropy representation of K, is irreduc-

ible, there exists a constant C’ such that
240 depy o depy=C"9.

Then we have

jtracego (C'9p)v,,=C'n = J.trace(,0 G2 do; o de) v, =240 || dop; |2,

Zm(ao) ”d%” go =i]0) <Ago¢i’ ¢i>ao=21(go)m(go)’

hence C’'=m(g,)2,(g,)n" V1. Q.E.D.
§4. Proof of Theorem 2. Let g=¢g,. Then

A, p,=<Lo™ 9>, =0 (for every 5 € &).
Two inner products <{-, ->,, {d-,d->, can be defined on &¥. There ex-
ists an orthonormal basis {7;}7“¢® of & with respect to {-, ->,, such that
{dys, dy;>e=0 (i£7). Then under the assumption that (1, >,=0 (y € &),
the following inequality holds (cf. Hersch [3]):
(1) 220 T Z 25810 Il /N Al
for an orthogonal basis {7,};{” of & with respect to {d-,d->,. By
means of the choice of {]}7¥”, we have > 742 p?=m(g,) V5" (cf. Proof
of Theorem 1). Then

(2) 2040 el = 227400 f 7w, =m(g) V'V,
where v, is the canonical measure associated to the metric g (cf. [2] p.
11).
) In case of n=dim. M =2, then
Il d77'l”§=” dmll?}o:<4go77ir 7}i>go=21(g0)’
by means of |dy|,=¢~"?|dy|,, where |dy|, is the pointwise norm of 1-form
dy with respect to the metric g, and jM 70, =L{ oy, (n € C=(M)). Hence,

together with (1) and (2), we have
70 2,(9) ' =2m(90) (90 ViV, thatis E(9)=E5(gy).
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In case of dim. M >2, we assume the linear isotropy representation
of K, is irreducible over R. Then

Dm0 dyy 0 dpy=2,(g0)M(g)n Vg,
(cf. Proof of Theorem 1), hence

[dns 3, < 2740 | doy 5, =trace,, Qo7 dy,o dp,) =2,(99m(g) V5.
Therefore we have
8) [ 1dni v ([ a0 )mign =gy r-orvs oo
Zm(go)(n~2)/2zl(go)n/2vd- (’n—-Z)/Z,
by L |dypalt, 9, =A4(g). On the other hand,

2/n (n—2)/n
(4) I dm”g:jm ldylz v, < (IM ( dﬂzﬁ)n/zvg) <IM ’Do)
2/n
— V;n-2)/n(IM [dy: [z fug) .

But, since |dy|,=¢"'"|dy|,, and J m)g=j ne"*v,,(y € C~(M)), we have
M M

(5) [, 1ansv,=| 10, v,
Together with (3), (4) and (5), we have
|yl Sm(gD ™2/ (g) Vi *-2in =i,
Therefore from (1) and (2), we have
7499 2,(9) 7 =2 m(90) " A (90) T VMV,
that is,
F(9)zm(9)*" " E5(9,). Q.E.D.
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