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59. The Behavior of Solutions of the Equation of
Kolmogorov-Petrovsky-Piskunov

By Koéhei UCHIYAMA
Tokyo Institute of Technology

(Communicated by Koésaku YO0SIDA, M. J. A., Dec. 12, 1977)

1. Given a source function F(u) on [0,1] which is positive on
0<u<1 with F(0)=F(1)=0, continuously differentiable on 0<u<1
and F/(0)>0, let us consider the Cauchy problem

2,
(1) %?:%%;‘74-17(@4) £>0, # € R=(co, + o)
1},’? u(t, ) = f (),
where an initial function f is piecewise continuous on R with 0< f<1.

Let w, denote a propagating front associated with speed ¢ : w,(x —ct)
is a non-trivial solution of )* (0=<w,<1), with normalization w,(0)=
1/2. Our interest in this article lies in such phenomena that
(2) u(t, x +m(t)) converges to w,(x) as t— oo,
where

m(t) =sup {x s ult, x) = —;-}

If f#£0 and f(x)—0 as x—oco, we have that u(¢, x)—0 as x—oc and
u(t, x)—>1 as t—oo (cf. [1]) and in particular that m(t) has a definite
value for large t. Aronson and Weinberger proved in [1] that there
is a positive constant ¢, called the minimal speed such that the propagat-
ing front associated with speed ¢ exists iff c¢?=c2 (c2=2F’(0); the
propagating front is unique up to the translation for each ¢) (cf. also
[3D). Such a phenomenon as described in (2) was first observed by
Kolmogorov, Petrovsky and Piskunov [3]: they proved that (3) holds
with ¢=¢, if we take f=I_..,, (the indicator function of the negative
real axis). Kametaka [2] proved (2) when f belongs to a certain class
of monotone functions. These are improved in the theorems of the next
section which confirm that (2) is valid to a wide class of initial func-
tions that contains all f(0<f<1) with non-empty compact support.

2. Let A(x) be a positive function on R such that A(x+x) ~A(x)
as x—oo for each x,¢ B. We will assume one of the following con-
ditions on the behavior of f for large positive x:

(3) f(@)=0 for > N,(N,eR) and [f==0
or

*  Trivial solutions are u=0 and u=1.



226 K. UcHIYAMA [Vol. 53(A),

(4) f@)~A(x)eb® as x— oo b>0).

We must further impose a slight (probably technical) restriction on the
tail of f at negative infinity:

(5) f is non-decreasing for <N, (N, e R) or liminf,, _., f(2)>0.

Theorem 1. Let f (0= f<1) satisfy the condition (3) or the con-
dition (4) with b>c,—+/ct—2F"(0) and satisfy the condition (5). Then
(2) holds with ¢=c, uniformly in >N for each N € R.*®

Theorem 2. Let f (0= f<1) satisfy the condition (4) with 0<b
<c,— v cE—2F"(0) and the condition (5). Then (2) holds with ¢=>b/2
+F'(0)/b uniformly in >N for each N e R.

The next theorem is complementary to these theorems.

Theorem 3. Let f (0 f=<1) be differentiable and positive and
satisfy lim sup,,. [—f/' @)/ f@)]<0 and lim,, . f(®)=0. Then, under
the condition (5), lim,, ., u(t, x+m(t))=1/2 uniformly on each compact
set of R.

The method of the proofs of Theorems 1 and 2 is similar to that
used by the authors mentioned in the previous section and summarized
as follows. Define

M(£)=sup {u(t o) —(t <0 for all y>x}

Then under assumptions of Theorems 1 or 2 we have M(t)—1 as t—co.
Set
__ou

0=w=M(@®)

where (¢, -) is the inverse function of u(t, ). Considering ¢ as a
functional of f, we denote it by ¢(t, w; f). Then ¢(t, w; w,) is inde-
pendent of ¢, since w,(x —ct) solves (1). We set z,(w)=¢(t, w; w,). The
theorems are proved by showing that ¢(f, w; f) converges to z.(w) as
t—oo. This is carried out, at first, for an appropriately chosen initial
function, say f,, which is subject to several restrictions, and then for
general f by applying a comparison theorem based on the maximum
principle of the parabolic equation to the equation

%) ]w,

ow?

ow _ 1,00 o , 1
it 27w P 5 +[F )+
where ¢=¢(t, w; f), =9, w; f,) and o=¢—+. This equation has the
singularity at w=0, but we can justify the application of the compari-
son theorem using estimates: ¢(t, w)=0(v[log 0| w) and (3°/ow*)(t, w)
=o(+|log w|/w) as w | 0 uniformly in 7-'<t<T, which follow from
Conditions (3) or (4).
3. Here are four theorems: the first one maintains the strong
stability (in a certain sense) of the front w, when ¢*>2 supyc,<; F' (1)

%  The theorem is valid also in case F’(0) =0 if we adopt the latter one in
the condition (5).
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and the remaining three give the criterion of whether or not m(t) can
be replaced by ct -+ const in Theorems 1 or 2.
Theorem 4. Let (1/2)¢* = y=8UDPycoc: F'(w) and f(x)=w.(x+ x,)
+ O(e™%®) with some constants b and x,. Then
w(l, -+ ct) =w(x + ) + O(e~777),
where p=0bc—0b/2—7/b) (assuming ¢>0, p>0 is equivalent to
c—V =2y <b<c++c*—2p), and if b>c we have

u(t, -+ ct) =w (x4 x,) + 0(7/1—76’ ‘“2/2"">

uniformly in ©>N for each N ¢ R.
Theorem 5. Let c>c¢,. Suppose that there exists lim,, ., *°f(x)
=0 < 0o where b=c—+/c?—2F'(0) and that

[ IFO-Fe|uan< o,

Then m(t)—ct is bounded iff 0<a<co. If this is the case, under the
condition (5), it holds that with some constant x,
(6) u(t, x+ ct)—>w(x 4+ 2,) as t—oo
uniformly in >N for each N e R.
Theorem 6. Let

j [F7(0)— ()| | log | w'du < oo.
0+

Assume that there exists another source function F* such that F*>F,
F*=£F and the minimal speed ¢, is common to F and F* (this implies
¢;=2F"(0)). Further assume that there exists lim,_., e**f(x)/x=a= co.
Then we have the same conclusion as Theorem 5 where ¢ is replaced
by c,.

Theorem 7. Let ci>2F'(0). Then m(t)—c,t is bounded, provided
that f#0 and lim,, ., e*f(x)=0 for some constant b>c,—+/ c2—2F"(0).
In particular (6) holds with c=c, under the assumptions of Theorem 1.

4. Kolmogorov et al. [3] showed that m'(t)=dm(t)/dt—c, as t—co
in case f=1I_.,. The nexttheorem generalizes the result.

Theorem 8. Suppose that for some continuous function k(t) there
exists lim, ., u(t, z+ k(t)) =g(x) in locally L, sense, where g is not a con-
stant. Then g(x)=w.(x+x,) with some constants x, and c,c*=ci. If
m(t) is defined (for large t) by u(t, m(t))=1/2 and mt)—k(t) being
bounded, then m (t)—c as t—oo. Furthermore v(t, x) =u(t, x +m(t)),
ov/dx and 0°v/9x? converge to w,, w, and w., respectively, as t—oo
locally uniformly.

If F(w)<F'(0O)u for all 0<u=<1, we can obtain a fine estimate of
m(t), which is an improvement of McKean [4].

Theorem 9. Suppose F(uw) <F'(0)u for all 0=Su=<1 and

L |F"(0)—F"(w)| |log u| u 'du < co.
+
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Let f satisfy the condition (8). Then

const<m(t) —c,t + Blogt <O(log log t).

Co
The proofs of these theorems will be published elsewhere.
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