54. On the 2-Components of the Unstable Homotopy Groups of Spheres. I

By Nobuyuki OdA
Department of Mathematics, Kyushu University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1977)

The 2-components π_{n+i}^{n} of the homotopy groups of spheres $\pi_{n+i}\left(S^{n}\right)$ have been determined in the unstable range for all n when $i \leqq 24[4,6$, 7,11]. The purpose of this note is to summarize briefly the results on the unstable homotopy groups of spheres which have been obtained as the application of the composition method of H. Toda [11]. Making use of the generators given in [2,4-9,11] and the new ones defined in this note, we will state, in this part I, the results on the 2 -components π_{n+i}^{n} for all $n^{*)}$ when $25 \leqq i \leqq 28$. Further results will be stated in the part II.

The results overlap in the metastable range with those of M . Mahowald [3] and S. Thomeier [10].

1. On the 25 -stem. There are following new elements: $\phi^{\prime} \in \pi_{28}^{3}$, $\phi^{\prime \prime} \in \pi_{30}^{5}$ and $\phi^{\prime \prime \prime} \in \pi_{32}^{7}$ with the Hopf invariants $\phi_{5}\left(\bmod 4 \nu_{5} \circ \bar{\kappa}_{8}, \alpha_{2}^{\prime}\right), \sigma_{9}^{3}$ and $\bar{\sigma}_{13}$ respectively.

Now, for an element $\alpha \in\left\{\eta_{4}, 2 \iota_{5}, \phi_{5}\right\}$, we have $2 \alpha \equiv \eta_{4} \circ \delta_{5}\left(\bmod \eta_{4} \circ \bar{\mu}_{5} \circ\right.$ $\left.\sigma_{22}, E \nu^{\prime} \circ \varepsilon_{7} \circ \kappa_{15}\right)$. Hence we conclude that there exists an element ϕ^{\prime} such that $2 \phi^{\prime} \equiv \eta_{3} \circ \delta_{4}\left(\bmod \eta_{3} \circ \bar{\rho}_{4} \circ \sigma_{21}\right)$ and $E \phi^{\prime} \in\left\{\eta_{4}, 2 c_{5}, \phi_{5}\right\}\left(\bmod \nu_{4} \cdot \pi_{29}^{7}\right)$. This implies

$$
\pi_{28}^{3}=Z_{4}\left\{\phi^{\prime}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \varepsilon_{6} \circ \kappa_{14}\right\} \oplus Z_{2} \oplus Z_{2} .
$$

In the above group and the following ones, the last two direct summands $Z_{2} \oplus Z_{2}$ stand for $Z_{2}\left\{\mu_{3, n}\right\} \oplus Z_{2}\left\{\eta_{n} \circ \bar{\mu}_{n+1} \circ \sigma_{n+18}\right\}(n \geqq 3)$ which survive in the stable range. Next, the relation $2 \phi^{\prime \prime} \equiv \pm E^{2} \phi^{\prime}$ (mod other elements) holds for an element $\phi^{\prime \prime} \in\left\{\nu_{5}, E \sigma^{\prime} \circ \sigma_{15}, \sigma_{22}\right\}_{1}$ and we see

$$
\begin{gathered}
\pi_{30}^{5}=Z_{8}\left\{\phi^{\prime \prime}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \varepsilon_{8} \circ \kappa_{16}\right\} \oplus Z_{2}\left\{\nu_{5}^{2} \circ \bar{\sigma}_{11}\right\} \oplus Z_{2} \oplus Z_{2}, \\
\pi_{31}^{6}=Z_{4}\left\{\Delta\left(\bar{\kappa}_{13}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1} \circ \varepsilon_{25}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1}^{(1)}\right)\right\} \oplus Z_{8}\left\{E \phi^{\prime \prime}\right\} \oplus Z_{2}\left\{\nu_{6}^{2} \circ \bar{\sigma}_{12}\right\} \oplus Z_{2} \oplus Z_{2}
\end{gathered}
$$

Let us choose $\phi^{\prime \prime \prime} \in\left\{\sigma^{\prime} \circ \sigma_{14}, \sigma_{21}, \nu_{28}\right\}_{1}$. Since $\nu_{7}^{2} \circ \bar{\sigma}_{13} \in 2 \pi_{32}^{7}$, it follows that $2 \phi^{\prime \prime \prime} \equiv \nu_{7}^{2} \circ \bar{\sigma}_{13}\left(\bmod 2 E^{2} \phi^{\prime \prime}\right)$, which determines

$$
\pi_{32}^{7}=\left(Z_{4} \oplus Z_{8}\right)\left\{\phi^{\prime \prime \prime}, E^{2} \phi^{\prime \prime}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \eta_{14} \circ \mu_{15}\right\} \oplus Z_{2} \oplus Z_{2} .
$$

Making use of the relations $E^{2} \phi^{\prime \prime \prime} \equiv \sigma_{9} \circ \nu_{16}^{*}\left(\bmod \nu_{9}^{2} \circ \bar{\sigma}_{15}\right)$ and $\sigma^{\prime} \circ \xi_{14}$ $\equiv E^{2} \phi^{\prime \prime}\left(\bmod 2 E \phi^{\prime \prime \prime}, 2 E^{2} \phi^{\prime \prime}, \eta_{7} \circ \bar{\mu}_{8} \circ \sigma_{25}\right)$, we obtain

$$
\pi_{34}^{9}=Z_{8}\left\{\sigma_{9} \circ \xi_{16}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \eta_{16} \circ \bar{\mu}_{17}\right\} \oplus Z_{4}\left\{\sigma_{9} \circ \nu_{16}^{*}\right\} \oplus Z_{2} \oplus Z_{2},
$$

[^0]$$
\pi_{35}^{10}=Z_{4}\left\{\sigma_{10} \circ \xi_{17}\right\} \oplus Z_{4}\left\{\sigma_{10} \circ \nu_{17}^{*}\right\} \oplus Z_{2} \oplus Z_{2} .
$$

We are in a position to use metastable periodic elements [9].

$$
\begin{aligned}
& \pi_{38}^{11}=Z_{2}\left\{K_{1}\right\} \oplus Z_{4}\left\{\sigma_{11} \circ \xi_{18}\right\} \oplus Z_{2}\left\{\sigma_{11} \circ \xi_{18}+\sigma_{11} \circ \nu_{18}^{*}\right\} \oplus Z_{2} \oplus Z_{2}, \\
& \pi_{37}^{1}=Z_{8}\left\{\xi_{12} \cdot \sigma_{3\}}\right\} \oplus Z_{2}\left\{E K_{1}\right\} \oplus Z_{2}\left\{\sigma_{12} \circ \xi_{19}+\sigma_{12} \circ \nu_{19}^{*} \oplus Z_{\oplus} \oplus Z_{2},\right. \\
& \pi_{38}^{13}=Z_{8}\left\{\xi_{13} \circ \sigma_{31}\right\} \oplus Z_{2} \oplus Z_{2}, \text { where } 2 \xi_{12} \circ \sigma_{30}=\sigma_{12} \circ \xi_{19} .
\end{aligned}
$$

We have the following isomorphisms: ${ }^{*)} \pi_{39}^{14}=\pi_{38}^{13}, \pi_{40}^{15}=Z_{2}\left\{D_{1} \circ \mu_{31}\right\}$ $\oplus \pi_{38}^{13}, \pi_{41}^{16}=Z_{2}\left\{B_{1} \circ \mu_{32}\right\} \oplus Z_{2}\left\{E D_{1} \circ \mu_{32}\right\} \oplus \pi_{38}^{13}, \pi_{42}^{17}=Z_{2}\left\{E B_{1} \circ \mu_{33}\right\} \oplus \pi_{38}^{13}$.

Since $\xi_{20} \circ \sigma_{38}=0$, we have $\pi_{43}^{18}=Z_{4}\left\{\xi_{18} \circ \sigma_{36}\right\} \oplus Z_{2} \oplus Z_{2}, \pi_{44}^{19}=Z_{2}\left\{\xi_{19} \circ \sigma_{37}\right\} \oplus Z_{2}$ $\oplus Z_{2}$ and $\pi_{n+25}^{n}=Z_{2} \oplus Z_{2}$ for $n=20,21,22$.

Similarly, the periodic elements give the following results: π_{48}^{23} $=Z_{2}\left\{D_{2} \circ \eta_{47}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{49}^{24}=Z_{2}\left\{B_{1} \circ \eta_{48}\right\} \oplus \pi_{48}^{23}, \quad \pi_{50}^{25}=Z_{2}\left\{E B_{2} \circ \eta_{49}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{51}^{26}$ $=Z\left\{\Delta\left(c_{53}\right)\right\} \oplus Z_{2} \oplus Z_{2}, \pi_{n+25}^{n}=Z_{2} \oplus Z_{2}$ for $n \geq \mathbf{2 7}$.
2. On the 26 -stem. There are following new elements : $\tau^{\prime \prime} \in \pi_{36}^{10}$, $\tau^{\prime \prime \prime} \in \pi_{37}^{11}$ and $\tau^{\text {IV }} \in \pi_{38}^{12}$ with the Hopf invariants $\eta_{19} \circ \sigma_{20} \circ \mu_{27}, \sigma_{21} \circ \mu_{28}$ and ρ_{23} (mod $2 \rho_{23}$) respectively.

Now using the relations $2 \bar{\mu}^{\prime}=\eta_{3}^{2} \circ \bar{\mu}_{5}$ and $2 \bar{\zeta}_{5}=E^{2} \bar{\mu}^{\prime}$, we have

$$
\begin{aligned}
& \pi_{29}^{3}=Z_{4}\left\{\bar{\mu}^{\prime} \circ \sigma_{22}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \phi_{6}\right\} \oplus Z_{2}\left\{\bar{\alpha} \circ \nu_{26}\right\} \oplus Z_{2}\left\{\eta_{3} \circ \mu_{3,4}\right\}, \\
& \pi_{31}^{5}=Z_{8}\left\{\tilde{\zeta}_{5} \circ \sigma_{24}\right\} \oplus Z_{2}\left\{\phi_{5} \circ \nu_{28}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\kappa}_{8} \circ \nu_{28}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \phi_{8}\right\} \oplus Z_{2} \oplus Z_{2} .
\end{aligned}
$$

The last two direct summands $Z_{2} \oplus Z_{2}$ stand for $Z_{2}\left\{\nu_{n}^{2} \circ \bar{\kappa}_{n+8}\right\}$ $\oplus Z_{2}\left\{\eta_{n} \circ \mu_{3, n+1}\right\}$; they survive in the stable range.

Following relations hold: $2 \bar{\sigma}_{6} \circ \sigma_{25}=\nu_{6} \circ \phi_{9}$ and $2 \Delta\left(\lambda \circ \nu_{31}\right) \equiv \nu_{6}^{2} \circ \bar{\kappa}_{12}-\nu_{6}$ $\circ \bar{\kappa}_{9} \circ \nu_{29}\left(\bmod \nu_{6} \circ \phi_{9}\right)$. They lead us to

$$
\begin{aligned}
\pi_{32}^{6}= & Z_{2}\left\{\Delta\left(E A_{1} \circ \mu_{25}\right)\right\} \oplus Z_{4}\left\{\Delta\left(\lambda \circ \nu_{31}\right)\right\} \oplus Z_{4}\left\{\bar{\sigma}_{6} \circ \sigma_{25}\right\} \oplus Z_{8}\left\{\bar{\zeta}_{6} \circ \sigma_{25}\right\} \\
& \left.\oplus Z_{2}\right\} \phi_{6} \circ \nu_{29} \oplus Z_{2} \oplus Z_{2} . \\
\pi_{33}^{7}= & Z_{2}\left\{\sigma^{\prime} \circ \omega_{14} \circ \nu_{30} \oplus \oplus Z_{2}\left\{\bar{\kappa}_{7} \circ \nu_{27}^{2}\right\} \oplus Z_{2}\left\{\bar{\sigma}_{7} \circ \sigma_{26}\right\} \oplus Z_{8}\left\{\bar{\zeta}_{7} \circ \sigma_{26}\right\}\right. \\
& \oplus Z_{2}\left\{\phi_{7} \circ \nu_{30}\right\} \oplus Z_{2} \oplus Z_{2} .
\end{aligned}
$$

Here we see a relation $\sigma^{\prime} \circ \bar{\zeta}_{14}=x \bar{\zeta}_{7} \circ \sigma_{26}$ for an odd integer x. $\pi_{38}^{9}=Z_{2}\left\{\sigma_{9} \circ \omega_{16} \circ \nu_{32}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \bar{\sigma}_{16}\right\} \oplus Z_{8}\left\{\sigma_{9} \circ \bar{\zeta}_{16}\right\} \oplus Z_{2}\left\{\bar{\kappa}_{9} \circ \nu_{29}^{2}\right\} \oplus Z_{2}\left\{\bar{\sigma}_{9} \circ \sigma_{28}\right\} \oplus Z_{2} \oplus Z_{2}$.

Now we have to define some elements by Toda brackets: $\tau^{\prime \prime}$ $\in\left\{4 \sigma_{10}, \nu_{17}, \rho_{20}\right\}_{1}, \tau^{\prime \prime \prime} \in\left\{2 \sigma_{11}, \nu_{18}, \rho_{21}\right\}_{1}$ and $\tau^{\mathrm{IV}} \in\left\{\sigma_{12}, \nu_{19}, \rho_{22}\right\}_{1}$. This enable us to determine

$$
\begin{aligned}
& \pi_{36}^{10}=Z_{8}\left\{\tau^{\prime \prime}\right\} \oplus Z_{4}\left\{R_{1}\right\} \oplus Z_{2}\left\{\sigma_{10} \circ \bar{\sigma}_{17}\right\} \oplus Z_{2} \oplus Z_{2}, \\
& \pi_{37}^{11}=Z_{8}\left\{\tau^{\prime \prime \prime}\right\} \oplus Z_{2}\left\{C_{1} \circ \kappa_{23}\right\} \oplus Z_{2}\left\{\sigma_{11} \circ \bar{\sigma}_{18}\right\} \oplus Z_{2} \oplus Z_{2} .
\end{aligned}
$$

In the above groups, we have the relations: $2 R_{1}=\Delta\left(\nu_{21} \circ \kappa_{24}\right)$ $=\bar{\kappa}_{10} \circ \nu_{30}^{2}-\nu_{10}^{2} \circ \bar{\kappa}_{18}, 2 \tau^{\prime \prime}= \pm \sigma_{10} \circ \bar{\zeta}_{17}, 2 \tau^{\prime \prime \prime}=-E \tau^{\prime \prime} \quad$ and $E R_{1} \equiv C_{1} \circ \kappa_{23} \quad(\bmod$ $\left.E^{2} \pi_{35}^{9}\right)$. Moreover we see $32 \tau^{\mathrm{IV}}=\sigma_{12} \circ \bar{\zeta}_{19}=4 E \tau^{\prime \prime \prime}$, which implies $\pi_{38}^{12}=Z_{64}\left\{\tau^{\mathrm{IV}}\right\} \oplus Z_{4}\left\{E \tau^{\prime \prime \prime}-8 \tau^{\mathrm{IV}}\right\} \oplus Z_{2}\left\{A_{1} \circ \kappa_{24}\right\} \oplus Z_{2}\left\{E C_{1} \circ \kappa_{24}\right\} \oplus Z_{2}\left\{\sigma_{12} \circ \bar{\sigma}_{19}\right\} \oplus Z_{2} \oplus Z_{2}$, $\pi_{39}^{13}=Z_{8}\left\{E \tau^{\mathrm{IV}}\right\} \oplus Z_{2}\left\{E A_{1} \circ \kappa_{23}\right\} \oplus Z_{2}\left\{\sigma_{13} \circ \bar{\sigma}_{20}\right\} \oplus Z_{2} \oplus Z_{2}$, $\pi_{40}^{14}=Z_{8}\left\{E^{2} \tau^{\mathrm{IV}}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{41}^{15}=\pi_{40}^{14}$.

[^1]Next, we use the periodic elements [9] to obtain $\pi_{42}^{16}=Z_{8}\left\{M_{1}^{(1)}\right\} \oplus \pi_{40}^{14}$, $\pi_{43}^{17}=Z_{8}\left\{E M_{1}^{(1)}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{44}^{18}=Z_{8}\left\{M_{2}^{\prime \prime \prime}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{45}^{19}=Z_{8}\left\{M_{2}^{\prime \prime}\right\} \oplus Z_{2} \oplus Z_{2}, \quad \pi_{46}^{20}$ $=Z_{16}\left\{\Delta\left(\sigma_{41}\right)\right\} \oplus Z_{4}\left\{E M_{2}^{\prime \prime}-2 \Delta\left(\sigma_{41}\right)\right\} \oplus Z_{2} \oplus Z_{2} . \quad \pi_{n+26}^{n}=Z_{8}\left\{E^{n-21} M_{2}^{\prime}\right\} \oplus Z_{2} \oplus Z_{2} \quad$ for $n=21,22,23$.

In the above groups, we have the relations: $2 M_{2}^{\prime \prime \prime}= \pm E^{2} M_{1}^{(1)}$, $2 M_{2}^{\prime \prime}=E M_{2}^{\prime \prime \prime}, 2 M_{2}^{\prime}=E^{2} M_{2}^{\prime \prime}$.

Finally we see : $\pi_{50}^{24}=Z_{8}\left\{M_{2}\right\} \oplus \pi_{47}^{21}, \pi_{51}^{25}=Z_{8}\left\{E M_{2}\right\} \oplus Z_{2} \oplus Z_{2}, \pi_{52}^{28}=Z_{4}\left\{E^{2} M_{2}\right\}$ $\oplus Z_{2} \oplus Z_{2}, \pi_{53}^{27}=Z_{2}\left\{E^{3} M_{2}\right\} \oplus Z_{2} \oplus Z_{2}, \pi_{n+26}^{n}=Z_{2} \oplus Z_{2}$ for $n \geqq 28$.
3. On the 27 -stem. There appears no new elements.

$$
\begin{aligned}
& \pi_{30}^{3}=Z_{2}\left\{\nu^{\prime} \circ \delta_{6}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \bar{\mu}_{6} \circ \sigma_{23}\right\} \oplus Z_{2}\left\{\varepsilon_{3} \circ \bar{\sigma}_{11}\right\} \oplus Z_{4}\left\{\mu_{3}^{\prime}\right\}, \\
& \pi_{32}^{5}=Z_{2}\left\{\sigma^{\prime \prime \prime} \circ \bar{\kappa}_{12}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\sigma}_{8}^{\prime}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\mu}_{8} \circ \sigma_{25}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \delta_{8}\right\} \oplus Z_{8} .
\end{aligned}
$$

The direct summand Z_{8} stands for $Z_{8}\left\{\zeta_{3, n}\right\}$. We have the relations: $2 \mu_{3}^{\prime}=\eta_{3}^{2} \circ \mu_{3,5}$ and $2 \zeta_{3,5} \equiv E^{2} \mu_{3}^{\prime}\left(\bmod \nu_{5} \circ \mu_{8} \circ \sigma_{25}\right)$.

$$
\begin{aligned}
& \pi_{38}^{6}=Z_{19}\left\{\Delta\left(\rho_{13} \circ \sigma_{28}\right)\right\} \oplus Z_{4}\left\{\sigma^{\prime \prime} \circ \bar{\kappa}_{13}\right\} \oplus Z_{2}\left\{\bar{\nu}_{6} \circ \bar{\sigma}_{14}\right\} \oplus Z_{8}, \\
& \pi_{34}^{7}=Z_{8}\left\{\sigma^{\prime} \circ \bar{\kappa}_{14}\right\} \oplus Z_{2}\left\{\bar{\nu}_{7} \circ \bar{\sigma}_{115}\right\} \oplus Z_{8}, \\
& \pi_{38}^{4}=Z_{8}\left\{\sigma_{9} \circ \bar{\kappa}_{16}\right\} \oplus Z_{2}\left\{\bar{\nu}_{9} \circ \bar{\sigma}_{17}\right\} \oplus Z_{8}, \\
& \pi_{37}^{0}=Z_{4}\left\{\Delta\left(\nu_{21}^{*}\right)\right\} \oplus Z_{8}\left\{\sigma_{10} \circ \bar{\kappa}_{17}\right\} \oplus Z_{8} .
\end{aligned}
$$

With the help of the metastable periodic elements [9], we see $\pi_{38}^{11}=Z_{2}\left\{C_{1}^{\mathrm{II}}\right\} \oplus Z_{2}\left\{C_{1}^{(1)} \circ \sigma_{31}\right\} \oplus Z_{8}\left\{\sigma_{11} \circ \bar{\kappa}_{18}\right\} \oplus Z_{8}, \quad \pi_{39}^{12}=Z_{2}\left\{A_{1}^{\mathrm{II}}\right\} \oplus Z_{2}\left\{A_{1}^{(1)} \circ \sigma_{32}\right\}$ $\oplus Z_{2}\left\{E C_{1}^{\text {II }}\right\} \oplus Z_{2}\left\{E C_{1}^{(1)} \circ \sigma_{32}\right\} \oplus Z_{4}\left\{\sigma_{12} \circ \bar{\kappa}_{19}\right\} \oplus Z_{8}, \pi_{40}^{13}=Z_{2}\left\{E A_{1}^{\text {II }}\right\} \oplus Z_{2}\left\{E A_{1}^{(1)} \circ \sigma_{33}\right\}$ $\oplus Z_{4}\left\{\sigma_{13} \circ \bar{\kappa}_{20}\right\} \oplus Z_{8}, \pi_{41}^{14}=Z_{2}\left\{E^{2} A_{1}^{11}\right\} \oplus Z_{2}\left\{\sigma_{14} \circ \bar{\kappa}_{21}\right\} \oplus Z_{8}, \pi_{n+27}^{n}=Z_{8}$ for $n=15,16$, 17, 18.

We make use of the periodic elements again to obtain $\pi_{46}^{19}=Z_{2}\left\{C_{2}^{\mathrm{T}}\right\}$ $\oplus Z_{2}\left\{C_{2} \circ \sigma_{39}\right\} \oplus Z_{8}, \quad \pi_{47}^{20}=Z_{2}\left\{A_{2}^{\mathrm{I}}\right\} \oplus Z_{2}\left\{A_{2} \circ \sigma_{40}\right\} \oplus \pi_{46}^{19}, \quad \pi_{48}^{21}=Z_{2}\left\{E A_{2}^{1}\right\} \oplus Z_{2}\left\{E A_{2} \circ \sigma_{41}\right\}$ $\oplus Z_{8}$.

For the element V_{2} of Y. Nomura [8], we have $\Delta\left(\nu_{45}^{2}\right)=2 V_{2}=E^{2} A_{2}^{\mathrm{I}}$. Hence we obtain the following results: $\pi_{49}^{22}=Z_{4}\left\{V_{2}\right\} \oplus Z_{8}, \pi_{n+27}^{n}$ $=Z_{2}\left\{E^{n-22} V_{2}\right\} \oplus Z_{8}$ for $n=23,24,25, \pi_{58}^{28}=Z\left\{\Delta\left(c_{57}\right)\right\} \oplus Z_{8}, \pi_{n+27}^{n}=Z_{8}$ for $n=26$, 27 and $n \geqq 29$.
4. On the 28 -stem. There appears no new elements.

$$
\pi_{31}^{3}=Z_{2}\left\{\nu^{\prime} \circ \eta_{8} \circ \mu_{7} \circ \sigma_{24}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \mu_{3,6}\right\} \oplus Z_{2}\left\{\phi^{\prime} \circ \nu_{28}\right\} \oplus Z_{2}
$$

The last direct summand Z_{2} stands for $Z_{2}\left\{\varepsilon_{n} \circ \bar{\kappa}_{n+8}\right\}$ which survives in the stable range.

$$
\pi_{38}^{5}=Z_{4}\left\{\nu_{5} \circ E \phi^{\prime \prime \prime}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \mu_{3,8}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \eta_{8} \circ \mu_{9} \circ \sigma_{26}\right\} \oplus Z_{2} .
$$

Now, $8 \Delta\left(\bar{\rho}_{13}\right)=\nu_{6} \circ \mu_{3,9}$ and $\nu_{7} \circ E^{3} \phi^{\prime \prime \prime}=0$, hence we have

$$
\begin{aligned}
& \pi_{34}^{6}=Z_{16}\left\{\Delta\left(\bar{\rho}_{13}\right)\right\} \oplus Z_{8}\left\{\bar{\nu}_{6} \circ \bar{\kappa}_{14}\right\} \oplus Z_{2}\left\{\nu_{6} \circ E^{2} \phi^{\prime \prime \prime}\right\} \oplus Z_{2}, \\
& \pi_{35}^{7}=Z_{2}\left\{\phi^{\prime \prime \prime} \circ \nu_{33}\right\} \oplus Z_{2}\left\{\sigma^{\circ} \circ \eta_{11} \circ \bar{\kappa}_{11}\right\} \oplus Z_{2}\left\{\bar{\nu}_{7} \circ \bar{\kappa}_{16}\right\} \oplus Z_{2}, \\
& \pi_{37}^{9}=Z_{2}\left\{\sigma_{9}^{4}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \eta_{18} \circ \bar{\kappa}_{17}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \nu_{18}^{*} \circ \nu_{34}\right\} \oplus Z_{2}\left\{\bar{\nu}_{9} \circ \bar{\kappa}_{17}\right\} \oplus Z_{2} .
\end{aligned}
$$

Here we remark that following two relations hold: $\sigma^{\prime} \circ \eta_{14} \circ \overline{1}_{15}$ $=\varepsilon_{7} \circ \bar{\kappa}_{15}+\kappa_{7}^{2}$ and $\sigma_{9} \circ \nu_{16}^{*} \circ \nu_{34}=E^{2} \phi^{\prime \prime \prime} \circ \nu_{34}$.

Let us use the periodic elements. Then we obtain $\pi_{38}^{10}=Z_{8}\left\{F_{1}^{(1)}\right\}$ $\oplus Z_{2}\left\{\sigma_{10}^{4}\right\} \oplus Z_{2}\left\{\sigma_{10} \circ \nu_{17}^{*} \circ \nu_{38}\right\} \oplus Z_{2}\left\{\bar{\nu}_{10} \circ \bar{\kappa}_{18}\right\} \oplus Z_{2}, \pi_{39}^{11}=Z_{22}\left\{C_{1} \circ \omega_{23}\right\} \oplus Z_{2}\left\{C_{1}^{(2)}\right\} \oplus Z_{2}\left\{E F_{1}^{(1)}\right\}$
$\oplus Z_{2}\left\{\sigma_{11}^{4}\right\} \oplus Z_{2}\left\{\bar{\nu}_{11} \circ \bar{\kappa}_{19}\right\} \oplus Z_{2}, \pi_{40}^{12}=Z_{2}\left\{A_{1}^{(2)}\right\} \oplus Z_{2}\left\{A_{1} \circ \omega_{24}\right\} \oplus Z_{2}\left\{A_{1} \circ \sigma_{24} \circ \mu_{31}\right\} \oplus Z_{2}\left\{E C_{1}^{(2)}\right\}$ $\oplus Z_{2}\left\{E C_{1} \circ \omega_{24}\right\} \oplus Z_{2}\left\{E^{2} F_{1}^{(1)}\right\} \oplus Z_{2}\left\{\bar{\nu}_{12} \circ \bar{\kappa}_{20}\right\} \oplus Z_{2}, \quad \pi_{41}^{13}=Z_{2}\left\{E A_{1}^{(2)}\right\} \oplus Z_{2}\left\{E A_{1} \circ \omega_{20}\right\}$ $\oplus Z_{2}\left\{E A_{1} \circ \sigma_{25} \circ \mu_{32}\right\} \oplus Z_{2}$.

Since $16 \Delta\left(\rho_{29}\right)=E^{2} A_{1}^{(2)}$, we have $\pi_{42}^{14}=Z_{32}\left\{\Delta\left(\rho_{29}\right)\right\} \oplus Z_{2}, \pi_{n+28}^{n}=Z_{2}$ for n $=15,16,17$.

The last parts of the 28 -stem are also determined by metastable periodic elements : $\pi_{48}^{18}=Z_{8}\left\{F_{2}\right\} \oplus Z_{2}, \pi_{47}^{19}=Z_{2}\left\{C_{2}^{(1)}\right\} \oplus Z_{2}\left\{E F_{2}\right\} \oplus Z_{2}, \pi_{48}^{20}=Z_{2}\left\{A_{2}^{(1)}\right\}$ $\oplus Z_{2}\left\{A_{2} \circ \varepsilon_{40}\right\} \oplus Z_{2}\left\{A_{2} \circ \eta_{40} \circ \sigma_{41}\right\} \oplus \pi_{47}^{19}, \pi_{49}^{21}=Z_{2}\left\{E A_{2}^{(1)}\right\} \oplus Z_{2}\left\{E A_{2} \circ \varepsilon_{41}\right\} \oplus Z_{2}\left\{E A_{2} \circ \eta_{41}\right.$ $\left.\circ \sigma_{42}\right\} \oplus Z_{2}, \pi_{50}^{22}=Z_{16}\left\{\Delta\left(\sigma_{45}\right)\right\} \oplus Z_{2}$ where $8 \Delta\left(\sigma_{45}\right)=E^{2} A_{2}^{(1)}, \pi_{n+28}^{n}=Z_{2}$ for $n=23,24$ and 25, $\pi_{54}^{26}=Z_{4}\left\{\Delta\left(\nu_{53}\right)\right\} \oplus Z_{2}, \pi_{55}^{27}=Z_{2}\left\{C_{3}\right\} \oplus Z_{2}, \pi_{56}^{28}=Z_{2}\left\{A_{3}\right\} \oplus \pi_{55}^{27}, \pi_{57}^{29}=Z_{2}\left\{E A_{3}\right\}$ $\oplus Z_{2}, \pi_{n+28}^{n}=Z_{2}$ for $n \geqq 30$.

References

[1] J. F. Adams: Vector fields on spheres. Ann. of Math., 75, 603-632 (1962).
[2] --: On the groups $J(X)$-IV. Topology, 5, 21-71 (1966).
[3] M. Mahowald: The metastable homotopy of S^{n}. Mem. Amer. Math. Soc., No. 72 (1967).
[4] M. Mimura: On the generalized Hopf homomorphism and the higher composition, Part I, Part II. J. Math. Kyoto Univ., 4, 171-190, 301-326 (1964/5).
[5] M. Mimura, M. Mori, and N. Oda: On the homotopy groups of spheres. Proc. Japan Acad., 50, 277-280 (1974).
[6] -: Determination of 2-components of the 23- and 24-stems in homotopy groups of spheres. Mem. Fac. Sci. Kyushu Univ., 29, 1-42 (1975).
[7] M. Mimura and H. Toda: The $(n+20)$-th homotopy groups of n-spheres. J. Math. Kyoto Univ., 3, 37-58 (1963).
[8] Y. Nomura: Note on some Whitehead products. Proc. Japan Acad., 50, 48-52 (1974).
[9] N. Oda: Hopf invariants in metastable homotopy groups of spheres. Mem. Fac. Sci. Kyushu Univ., 30, 221-246 (1976).
[10] S. Thomeier: Einige Ergebnisse über Homotopiegruppen von Spären. Math. Ann., 164, 225-250 (1966).
[11] H. Toda: Composition methods in homotopy groups of spheres. Ann. of Math. Studies, No. 49, Princeton (1962).

[^0]: *) We omit the cases that $n=2,4$ and 8 ; the results are immediate from Proposition 4.4 of [11].

[^1]: *) When we write $\pi_{i}^{n}=A \oplus \pi_{i-k}^{n-k}$, the latter direct summand must be understood as the image of the (iterated) suspension homomorphism, which is incidentally monic.

