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Existence o Periodic Solutions o Nonlinear
Hyperbolic System

By Yasumasa NISHIURA
Faculty of Science, Kyoto University

(Communicated by K.Ssaku YOSIDA, M.J.A., Nov. 12, 1977)

In this paper we discuss the problem of the existence of real peri-
odic solutions along the characteristic lines satisfying the nonlinear
hyperbolic system o equations for the unknown U--(u, u)

U+AUx--BU+F(U,D, ( 1 )
where A and B are real constant matrices as follows:

Cl =/= C., B
c c d

and F(U, D--(f(u, u., D, f(u, u, D) is a smooth real-valued vector
function and is a real parameter. We assume that F(U, 0)--0 and
B satisfies

ad. det(B) O.
We write (1) in the characteristic form

DU--BU+F(U,D,
where

DU t(u/,u./]) and __x--c.t
el C

x--ct

(2)

(3)

We note that nonlinear term F(U, D is autonomous (i.e. not ex-
plicitly depends on , ]). As for non-autonomous periodic perturba-
tion, there is an extensive literature concerning the existence of peri-
odic solutions of nonlinear hyperbolic equations such as [1], [2], [4], [5],
[6].

In Lemmas 1 and 2 we summarize the results about the un-perturb-
ed equation

DU---BU. (4)
Under the assumption (2) of B, it is easy to prove those lemmas by
Fourier series expansion, so we omit them. In Lemmas 3 and 4, we
reduce the problem about (3) to solve the bifurcation equation, and
using an implicit function theorem we can obtain the main theorem.
In the last part of this paper we show an example in population dy-
namics with migrational effect to which our theorem can apply. We
use the following notations:

D is the space of C-periodic vector functions with S-periodic in
and T-periodic in ] where S and T are constants given in Lemma 1,
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and which is tgpologized by the usual seminorms, D is the space of
periodic distributions on D,,

H={V=t(ul, uf); V e D, V I= lulll + lu.ll < + c),
where we denote the usual Sovolev k-norm by II" I1, and

H(b)={U-t(u, u); U e H,
Lemma 1. If B satisfies (2), then linear equation (4) has periodic

solutions with S-periodic in and T-periodic in where

S T (be ad)
r r r

They form the real two-dimenional vector space and we denote it by
N.

Remark 1. The adjoint equation DV=--tBV also has periodic
solutions with the same periodicity as in Lemma 1, and they orm the
real two-dimensional vector space. We denote it by N*.

Definition 1. We denote the projection which maps D onto N
(resp. N*) by P (resp. Q) and the null space of P (resp. Q) by P (resp.
Q).

Lemma 2. The non-homogeneous linear equation
DU=BU+H, H e D, ( 5 )

has a solution in D if and only if QH=O. Furthermore if H satisfies
this condition and belongs to H then there exists a unique solution
of (5) inH which satisfies PU=O. If this unique solution is designated
by KH, then K is a linear operator mapping H QZ into H P, and
there exists a positive constant C such that

To solve (3) we introduce the real parameters ,, and new inde-
pendent variables x, y as follows"

(1 + z)x, v (1 +,)y. ( 6 )
Next we transform the dependent variable into W t(w, w) as follows:

U=W+ U0, U0=(u, u) e N, U00, ( 7 )
where N is the same space as in Lemma 1 in which , are replaced
by x, y, and U0 is any periodic vector unction from which periodic
solutions of (3)will bifurcate. We denote the projections onto these
N and N* by the same notations, i.e., P, Q. Then W satisfies the equa-
tion"

DW=BW+G(x, y, W,e, Z,’), 8 )
where

G--t(g, g),
g-- g(x, y, w, w, , /) =/(a(u+w) / b(u+ w))

+ (1 + tt)f(u + wl, u+w, D,
g.-- g.(x, y, w, w, , ) (c(u+w) + d(u+ w.))

+ (1 + ,)f(u +w, u+ w., D.
Applying the projection Q to (8), we obtain the system of equations
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DW--BW+(I-Q)G (9.1)
QG-O, (9.2)

where I denotes the identity operator. This system is equivalent to
(8). In the following two lemmas we state about the existence of solu-
tions of (9.1) and their smooth dependency on the parameters. We use
the following notation

Cm(RxR1, R)={V=t(), v); v--vi(x, y, e) is a real-valued
m-times continuously differentiable func-
tion in R R, i 1, 2}.

Lemma :). Suppose that
F(U, ) e C/(R R, R), k>__2 integer,

and that positive constant b is given. Then there exist positive con-
stants , [1 and , such that for , l, , I1<=, IIl<=P, I1-<’ the equation

W:K(I-- Q)G( W, , /, ) (10)
has a unique solution W(, l,,) which belongs to H(b)V1P and is
Lipschitz continuous with respect to , and , and W(O, O, 0):0. This
W(,/, ) satisfies (9.1) in the sense of distribution.

Proof. Let us consider the following operator T
TV=K(I-Q)G(., ., V, , l, ).

Under the assumption of F(U, ) we can show that T is a contraction
mapping in H(b) for sufficiently small ,/,, with the aid of the lemmas
of [3], [5], [6]. Then using the standard techniques, we can establish
the lemma. More precisely see [4], [6], [7].

Remark 2. For k_>_3, W(,/, ,) is a classical solution of (9.1).
Lemma 4. Suppose that

F(U, e) e C+(R R, R), k>=2 integer. (11)
Then there exist positive constants , /. and (. <=, //, <=) such
that for , l, , I], II]/., I1, W(, Z, ) in Lemma 3 has Frchet
derivatives from R to H with respect to/ and which are continuous
in operator norm.

Proof. See [4], [6], [7].
Next we. solve the bifurcation equation (9.2). First we note (9.2)is
equivalent to the system of equations

B1(,/2, p)= tG. Vdxdy:O,
(12)

B(e,/2, p): tG. V*dxdy=O,

where denotes the usual inner product in R, U the complex conjugate
vector of U, and V and V* are appropriate bases in N*. From Lemma
3 and the form of G, we easily see that -/==0 satisfies (12).
Therefore we solve (12) with respect to/ and, in the small neighbour-
hood of :0. The Jacobian of (12) at :/:,:0 is
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(13)

where V=t(v, v) and V* =t(v*, v*).
Using the hypatheses of (2) and U0:/:0, we can easily see that (13) is

not equal to zero. By the implicit function theorem we obtain the fol-
lowing lemma.

Lemma 5. Under the hypotheses of (2), U0:/:0 and (11), there ex-
ist positive constants e3,/3, 1,;3(:3:2,/--g3/2, l,3:13) such that (12) has a
unique one-parameter family of solutions Z(D, () for []<7_, I/1=</,
1]__<,3, and which are continuous in and/(0)=,(0)=0.
Using Lemmas 1-5 and transformations (6), (7), we conclude"

Theorem. Suppose that F(U, D satisfies F(U, 0)=0 and (11), B
satisfies (2), and that a, b (Oab) are given constants. Then for
any U0(:#0)e N, Uoll_a, there exists a positive constant 0=e0(a, b,
k) such that for I[__<0 the equation (3) has a unique one-parameter
family of periodic solutions U(D with the properties;

1) U(D I <-_ b, where U(D-" U(x, y, D
U((1 +/(D)x, (1 + (D)Y, D,

2) (1 +/(D) S-periodic in , and (1 + (D) T-periodic in 7,
3) U(D tends to Uo as -+0 in H-norm sense,

where/(D and ,(D are uniquely defined continuous functions for
and/(0) (0) O.

Example. Let us consider the system of equations

au/at + c(3u/ax) (r--au,-- bu2)u, (14)au/at + c(au2 / ax) (r2 cu, du)u2,
where all coefficients of the right-hand side are positive and satisfy the
following conditions

ad--bc<O, (’2/c)<(q/a), (,/b)<(’2/d). (15)
This system describes the behavior of the populations of two species u
and u which compete with each other and migrate in different direc-
tions (cf. [8]).

From the conditions (15), we easily see that (14) has a positive
constant equilibrium solution

(1, ,) 1(dr1- b’2, a..,- c.,). (16)
ad--bc

If we apply the following transformation to (14)
ev=u,--t, ev,=u--t,., e real parameter,

we obtain the perturbed equations from the equilibrium solution (16) as
follows"

3v /at + c,(3v,/ax) --atlv btva-(av + bvv)
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3V2/at + c2(a%/ax) -cfi.v,-dv-(dv+ cv,v.).
From the first condition o (15) we can apply Theorem to this system of
equations.

[1]

[2]

[3]

]4[

[5]

[6]

[7]

[8]

Reerences

O. Vejvoda" Periodic solutions of a linear and weakly nonlinear wave
equation in one dimension. I. Czech. Math. J., 14, 341-382 (1964).

L. Cesari: Existence in the large of periodic solutions of hyperbolic partial
differential equations. Arch. Rational Mech. Anal., 2), 170-190 (1965).

J. Moser: A rapidly convergent iteration method and nonlinear partial
differential equations. Ann. Scuola Norm. Super. Pisa, Ser. 3, 2), 265-315.
(1966).

J. K. Hale: Periodic solutions of a class of hyperbolic equations containing
a small parameter. Arch. Rational Mech. Anal., 23, 380-398 (1967).

P. H. Rabinowitz" Periodic solutions of nonlinear hyperbolic partial differ-
ential equations. Comm. Pure Appl. Math., 2), 145-205 (1967).

W. S. Hall: Periodic solutions of a class of weakly nonlinear evolution
equations. Arch. Rational Mech. Anal., 39, 294-322 (1970).

Y. Nishiura: Master thesis, Faculty of Science, Osaka Univ. (1975) (in
Japanese).

V. Volterra: Lemon sur la th4orie mathmatique de la lutte pour la vie.
Gauthier-Villars, Paris (1931).


