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50. Nonlinear Parabolic Variational Inequalities
with Time.dependent Constraints

By Nobuyuki KENMOCHI
Department of Mathematics, Faculty of Education, Chiba University

(Communicated by Kosaku Yosipa, M. J. A., Nov. 12, 1977)

Let H be a (real) Hilbert space with the inner product (-, -); and
norm ||-||zy in H, and X a uniformly convex Banach space with the
strictly convex dual X*, natural pairing (-, -)y: X*x X—R' and with
norm ||-||y in X. Suppose that X is a dense subspace of H and the
natural injection from X into H is continuous. Then, identifying H
with its dual in terms of the inner product (-, -)z, we have the rela-
tion XCHC X* where H is dense in X*. Let 0<T<oco and 2<p<oo
with 1/p+1/p'=1, and put H=L*0,T; H) and X=L*0, T; X) with
X*=L?.(0,T; X*); the natural pairing between X* and ¥ is denoted
by (-, -)x as well.

We are given a family {K(f); 0<t<T} of closed convex subsets of
X satisfying that

(KI) for each r=0 there are real-valued functions a, ¢ WH*0, T)
and B, e W 0, T) with the following property: for each s,te[0,T]
with s<t and z € K(s) with ||z||z =7 there exists z, € K(t) such that

121 —2lz =], () —a, () (14| 2[ED
and
12,5 =2 [E <18 — B.() X+ || 2[1%).

We put Ky=the closure of K(0) in H and K ={veX;v()e K({)
for a.e. t € [0, T]}.

We are also given a family {A(t) ; 0<t<T} of (nonlinear) operators
from D(A(#))=X into X* such that

(AL) A defined by [Av](t) =A@)v(t) is an operator from D(A) =X
into X* and maps bounded subsets of X into bounded subsets of X*;

(AII) for each he2X there are a positive number ¢, and a func-
tion ¢, € L'(0, T') satisfying

Az, z—h@®)x=cil2lz—ci(t)  a.e. on [0, T]
forall ze X, where [-1y is a seminorm on X such that [-1x+|- |z gives
a norm on X equivalent to ||-|x.

With the above notation, given f e X* and u, e K, our problem
(Vg f,u) is to find a function # € X such that

(1) o (=du/dt)eX* and W + Au—f, u—v)x <0 for all v e K;

(ii) u(0)=u, (note that u e C([0, T]; H) if u e K and %’ € X*).
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This is the strong formulation, while in its weak formulation (V,;
f>u,), instead of (i) and (ii), only the following (iii) is required:

(i) @ +Au—f,u—v)x—||u,—v0)]%/2<0 for all ve K with
v e X*,

Our object is to show the existence and uniqueness of a solution
to (V,; f,u,). For this purpose we introduce the following (possibly
multivalued) operator L, : [u, 9] € G(L,,) (the graph of _[,) if and only
ifueK,geX* and (v —g, u—v)x —||u,—v(0)3/2=<0 for all v e X with
v eX*. Asis easily checked, u is a solution to (V,; f, u,) if and only
if it is a solution of the functional equation £, u+ Au s f.

Now given u,€ Ky, we consider the following operator [} cor-
responding to the strong formulation of our problem: [u, g] ¢ G(.L3,) if
and only if 4 e K with % ¢ X*, u(0)=u,, g € X* and (W —g,u—v)x =<0
for allve K. Clearly, .[,, is an extension of _[3,. Also, applying the
results in [8] and [10], we can prove:

Theorem 1. (i) For each u, e Ky, .L[,, is maximal monotone.

(ii) If wye Ky and uwe D(L,,), then we C([0, T1; H) and u(0)=1u,.

(ii) Let u,; € Ky and [u;, 9;] € G( Ly, ) (i=1,2). Then for any s,
t e [0, T] with s<t,

()~ 0O~ &) @S2 | @10 m—u)xdr.

(iv) Let {uy,,}CKy and {[u,, 9,1} with [u,, 9,1 € G(L,,,) be se-
quences such that u, ,—u, strongly in H,u,—u strongly (resp. weakly)
n X and g,—9 weakly (resp. strongly) in X* as n—oo. Then [u, g]
e G(L,,) and u,—u strongly in C([0, T1; H) as n—co.

(v) Let [u, 9]l e G(L,,) with u,e Ky and {u,,} be a sequence in
K(0) such that u,,—u, strongly in H as n—co. Then there is a se-
quence {[U,, g,1} such that [u,, 9,1} € G(L%,.), 9. € H, 9,—~9 weakly in
X* and u,—u strongly both in C([0, T1; H) and in X as n—oo.

In addition to the assumptions we have made so far, assume that

KID z,+2,—2z,€ K(t) for any 2, 2, 2, € K(t) and t € [0, T.

Then the following holds.

Proposition. For each u,e Ky, G(L,,) is convex and closed in
XXX* (and hence it is closed in the weak-weak topology of 2 X X*).

Next, by using the above results and a slightly modified version of
[6; Theorem 2], concerning the equation L, u+ Au > f, we have:

Theorem 2. Suppose that J is of type M (cf. [2]). Then for
each u, € Ky, the range of _L,,+ A is the whole of 2£*, that is, the equa-
tion L, u+Aus f has a solution for every f e 2X*.

Theorem 3. If there is a function we L'0,T) such that (A(t)z,
— A2y, 21— 2) x +0@)||2,—2,|% =0 for all z,,2,€ K(t) and a.e. t [0, T],
then the equation L, u+ Aus f admits at most one solution for each
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uy € Ky and f e X*, and the solution depends continuously on u, and f.

The detailed proofs of the results mentioned above and their ap-
plications will be given in [9].

Remarks. (i) InTheorem2,if /is apseudo-monotone operator
(cf. [2]) from ¥ into X'*, then the same conclusion of Theorem 2 is valid
without the assumption (KII) (cf. [3; Théoréme 1]).

(ii) Given f e X*, consider the variational problem, with periodic
condition, to find v € X such that (v/+ Au—f, u—v)x <0 for all v e X
with v € X* and v(0) =v(T). To this problem the same type of treat-
ment is available; in this case, we require that K(T)C K(0), and the
operator [, corresponding to [, is defined by the following: [u, g]
e G(L,) if and only if ue X, geX* and (v—g,u—v)x =<0 for all
v e K with v e X* and v(0)=v(T). For details, see [9].

(iii) In case K(t) is time-independent, we find many interesting
results on the problem (V,; f,u,) or (V,; f,u,) formulated for A(f) in
various classes of nonlinear operators of montone type (e.g., [3, 4, 11]).
Recently, in case A(t) is the subdifferential of a proper lower semi-
continuous convex function, various results on the solvability of the
evolution equation (d/dt)u(t)+A@)u(t) s f(¢) with variable domains
have been established (e.g., [1, 5,7, 10, 12, 13]).
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