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Nonlinear Parabolic Variational Inequalities
with Time.dependent Constraints

By Nobuyuki KENMOCHI
Department of Mathematics, Faculty of Education, Chiba University

(Communicated by KSsaku YOSlDA, M.J.A., Nov. 12, 1977)

Let H be a (real) Hilbert space with the inner product (.,.)n and
norm ]].]]+/- in H, and X a uniformly convex Banach space with the
strictly convex dual X*, natural pairing (., .)x" X* x X-oR and with
norm I1" Ix in X. Suppose that X is a dense subspace of H and the
natural injection from X into H is continuous. Then, identifying H
with its dual in terms of the inner product (., ")H, we have the rela-
tion XcHX* where H is dense in X*. Let 0Tc and 2<pc
with lip+lip’--I, and put q(=L(0, T; H) and =L’[0, T; X) with
2)*--L’. (0, T; X*); the natural pairing between* and is denoted
by (.,.)2 as well.

We are given a family {K(t);O<tg T} of closed convex subsets of
X satisfying that

(KI) for each r>O there are real-valued functions are WI,(O, T)
and fir e WI’(O, T) with the following property" for each s, t e [0, T]
with s< t and z e K(s) with z IIH gr there exists z K(t) such that

and

We put Kz=the closure of K(0) in H and --{v e_T; v(t)e
for a.e. t e [0, T]}.

We are also given a family {A(t) 0< t =< T} of (nonlinear) operators
from D(A(t))--X into X* such that

(AI) defined by [v](t)=A(t)v(t) is an operator from D()=.
into 2)* and maps bounded subsets of 2 into bounded subsets of

(AII) for each h e2 there are a positive number Co and a func-
tion c e LI(O, T) satisfying

(A(t)z, z--h(t))x>=Co[Z]x-C(t) a.e. on [0, T]

for all z e X, where [. ]x is a seminorm on X such that [. ]x+ I1’ ll gives
a norm on X equivalent to l. Ix.

With the above notation, given f e_* and u0 e Kn, our problem
(V ;f, u0) is to find a function u e j/such that

( ) u’ (= du/dr) e 2* and (u’ +u--f, u--v): <= 0 for all v e J
(ii) u(0) =u0 (note that u e C([0, T] H) if u e j and u’ e 2*).
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This is the strong formulation, while in its weak ormulation (V
f, u0), instead of (i) and (ii), only the ollowing (iii) is required"

(iii) (v’ +u--f, u--v)--l] Uo-- v(O)l /2 0 or all v e j/ with
V .*.

Our object is to show the existence and uniqueness of a solution
to (V ;f, u0). For this purpose we introduce the following (possibly
multivalued) operator -o" [u, g] e G(-uo) (the graph o _L’0) i and only
if u e j/:, g e 27" and (v’--g, u--v):--]]Uo--v(O)]]/2<=O for all v e j/with
v’ e 2*. As is easily checked, u is a solution to (V ;f, u0) if and only
if it is a solution o the functional equation A:0u/u f.

Now given u0 e K, we consider the ollowing operator A:o cor-
responding to the strong formulation of our problem" [u, g] e G(A?o) if
and only if u e 3/with u’ e*, u(0)=u0, g e 2* and (u’--g, u--v)2:-<O
for all v e j. Clearly, uo is an extension o -L’o. Also, applying the
results in [8] and [10], we can prove"

Theorem 1. ( ) For each uo e KH, -tuo is maximal monotone.
(ii) If Uo e KH and u e D(.fuo), then u e C([0, T] H) and u(0)--u0.
(iii) Let uo.,, e K and [u,, gl] e G(-uo.,) (i--1, 2). Then for any s,

t e [0, T] with s <_ t,

Ul(t)- u2(t)]]-/- ]1Ul()- U2(8)1]-/ 2 : (gl- g2, u2)dr.

(iv) Let {u0,=}Kn and {[u,g]} with [u=,g] e G(.0,) be se-
quences such that u0,=u0 strongly in H, u=-u strongly (resp. weakly)
in and gg weakly (resp. strongly) in* as nc. Then [u, g]
e G(.ffuo) and u=-u strongly in C([0, T]; H) as n-c.

( v ) Let [u, g] e G(.o) with uo e Kn and {u0,} be a sequence in
K(O) such that u,uo strongly in H as n-oct. Then there is a se-
quence {[u, g=]} such that [u, g=]} e G(_L’o,), g= e J(, g=g weakly in
3* and u=--u strongly both in C([0, T] H) and in as

In addition to the assumptions we have made so Yar, assume hat
(KII) z+ z.--z e K(t) or any z, z2, z K(t) and t e [0, T].

Then the following holds.
Proposition. For each uo e Kn, G(.uo) is convex and closed in

x* (and hence it is closed in the weak-weak topology
Next, by using the above results and a slightly modified version of

[6; Theorem 2], concerning the equation oU+u f, we have"
Theorem 2. Suppose that is o type M (cf. [2]). Then or

each uo e Kn, the range o -uo+ is the whole of*, that is, the equa-
tion _oU+u f has a solution/or every f *.

Theorem 3. If there is a/unction o e L(O, T) such that (A(t)z
--A(t)z, z-z.)x+o(t)[Iz-zll>O for all z, z2 e K(t) and a.e. t e [0, T],
then the equation .finoU+Tu f admits at most one solution for each
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uo e KH and f e 2*, and the solution depends continuously on Uo andf
The detailed proofs of the results mentioned above and their ap-

plications will be given in [9].
Remarks. ( In Theorem 2, if is a pseudo-monotone operator

(cf. [2]) rom 2 into 2*, then the same conclusion of Theorem 2 is valid
without the assumption (KID (cf. [3; Thorme 1]).

(ii) Given f e_*, consider the variational problem, with periodic
condition, to find u e j/: such that (v’+u-f, u-v): <__0 for all v e j
with v’ e 2* and v(O)=v(T). To this problem the same type of treat-
ment is available; in this case, we require that K(T)K(O), and the
operator

_
corresponding to -L’u0 is defined by the following" [u, g]

e G(_) if and only if u e j, g e_* and (v’- g, u-- v):__< 0 for all
v e with v’ e_* and v(O)=v(T). For details, see [9].

(iii) In case K(t) is time-independent, we find many interesting
results on the problem (V8 ;f, u0) or (Vw f, u0) formulated for A(t) in
various classes of nonlinear operators of montone type (e.g., [3, 4, 11]).
Recently, in case A(t) is the subdifferential of a proper lower semi-
continuous convex function, various results on the solvability of the
evolution equation (d/dt)u(t)+A(t)u(t)f(t) with variable domains
have been established (e.g., [1, 5, 7, 10, 12, 13]).
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