50. Nonlinear Parabolic Variational Inequalities with Time-dependent Constraints

By Nobuyuki Kenmochi
Department of Mathematics, Faculty of Education, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1977)

Let H be a (real) Hilbert space with the inner product $(\cdot, \cdot)_{H}$ and norm $\|\cdot\|_{H}$ in H, and X a uniformly convex Banach space with the strictly convex dual X^{*}, natural pairing $(\cdot, \cdot)_{X}: X^{*} \times X \rightarrow R^{1}$ and with norm $\|\cdot\|_{X}$ in X. Suppose that X is a dense subspace of H and the natural injection from X into H is continuous. Then, identifying H with its dual in terms of the inner product $(\cdot, \cdot)_{H}$, we have the relation $X \subset H \subset X^{*}$ where H is dense in X^{*}. Let $0<T<\infty$ and $2 \leqq p<\infty$ with $1 / p+1 / p^{\prime}=1$, and put $\mathscr{G}=L^{2}(0, T ; H)$ and $\mathfrak{X}=L^{p}(0, T ; X)$ with $\mathfrak{X}^{*}=L^{p^{\prime}} \cdot\left(0, T ; X^{*}\right)$; the natural pairing between \mathfrak{X}^{*} and \mathfrak{X} is denoted by $(\cdot, \cdot) \mathfrak{X}$ as well.

We are given a family $\{K(t) ; 0 \leqq t \leqq T\}$ of closed convex subsets of X satisfying that
(KI) for each $r \geqq 0$ there are real-valued functions $\alpha_{r} \in W^{1,2}(0, T)$ and $\beta_{r} \in W^{1,1}(0, T)$ with the following property: for each $s, t \in[0, T]$ with $s \leqq t$ and $z \in K(s)$ with $\|z\|_{H} \leqq r$ there exists $z_{1} \in K(t)$ such that

$$
\left\|z_{1}-z\right\|_{H} \leqq\left|\alpha_{r}(t)-\alpha_{r}(s)\right|\left(1+\|z\| \|_{X}^{p_{X}^{\prime 2}}\right)
$$

and

$$
\left\|z_{1}\right\|_{X}^{p}-\|z\|_{X}^{p} \leqq\left|\beta_{r}(t)-\beta_{r}(s)\right|\left(1+\|z\|_{X}^{p}\right) .
$$

We put $K_{H}=$ the closure of $K(0)$ in H and $\mathcal{K}=\{v \in \mathscr{X} ; v(t) \in K(t)$ for a.e. $t \in[0, T]\}$.

We are also given a family $\{A(t) ; 0 \leqq t \leqq T\}$ of (nonlinear) operators from $D(A(t))=X$ into X^{*} such that
(AI) \mathcal{A} defined by $[\mathcal{A} v](t)=A(t) v(t)$ is an operator from $D(\mathcal{A})=\mathfrak{X}$ into \mathfrak{X}^{*} and maps bounded subsets of \mathfrak{X} into bounded subsets of X^{*};
(AII) for each $h \in \mathfrak{X}$ there are a positive number c_{0} and a function $c_{1} \in L^{1}(0, T)$ satisfying

$$
(A(t) z, z-h(t))_{X} \geqq c_{0}[z]_{X}^{p}-c_{1}(t) \quad \text { a.e. on }[0, T]
$$

for all $z \in X$, where $[\cdot]_{X}$ is a seminorm on X such that $[\cdot]_{X}+\|\cdot\|_{H}$ gives a norm on X equivalent to $\|\cdot\|_{X}$.

With the above notation, given $f \in \mathfrak{X}^{*}$ and $u_{0} \in K_{H}$, our problem ($V_{s} ; f, u_{0}$) is to find a function $u \in \mathcal{K}$ such that
(i) $u^{\prime}(=d u / d t) \in \mathscr{X}^{*}$ and $\left(u^{\prime}+\mathcal{A} u-f, u-v\right) \mathfrak{X} \leqq 0$ for all $v \in \mathcal{K}$;
(ii) $u(0)=u_{0}$ (note that $u \in C([0, T] ; H)$ if $u \in \mathcal{K}$ and $\left.u^{\prime} \in \mathfrak{X}^{*}\right)$.

This is the strong formulation, while in its weak formulation (V_{w}; f, u_{0}), instead of (i) and (ii), only the following (iii) is required:
(iii) $\left(v^{\prime}+\mathcal{A} u-f, u-v\right) \mathscr{X}-\left\|u_{0}-v(0)\right\|_{H}^{2} / 2 \leqq 0$ for all $v \in \mathcal{K}$ with $v^{\prime} \in \mathfrak{X}^{*}$.

Our object is to show the existence and uniqueness of a solution to ($V_{w} ; f, u_{0}$). For this purpose we introduce the following (possibly multivalued) operator $\mathcal{L}_{u_{0}}:[u, g] \in G\left(\mathcal{L}_{u_{0}}\right)$ (the graph of $\left.\mathcal{L}_{u_{0}}\right)$ if and only if $u \in \mathcal{K}, g \in \mathfrak{X}^{*}$ and $\left(v^{\prime}-g, u-v\right) \mathfrak{X}-\left\|u_{0}-v(0)\right\|_{H}^{2} / 2 \leqq 0$ for all $v \in \mathcal{K}$ with $v^{\prime} \in \mathfrak{X}^{*}$. As is easily checked, u is a solution to ($V_{w} ; f, u_{0}$) if and only if it is a solution of the functional equation $\mathcal{L}_{u_{0}} u+\mathcal{A} u \ni f$.

Now given $u_{0} \in K_{H}$, we consider the following operator $\mathcal{L}_{u_{0}}^{s}$ corresponding to the strong formulation of our problem: $[u, g] \in G\left(\mathcal{L}_{u_{0}}^{s}\right)$ if and only if $u \in \mathcal{K}$ with $u^{\prime} \in \mathfrak{X}^{*}, u(0)=u_{0}, g \in \mathfrak{X}^{*}$ and $\left(u^{\prime}-g, u-v\right) \not X^{\infty} \leqq$ for all $v \in \mathcal{K}$. Clearly, $\mathcal{L}_{u_{0}}$ is an extension of $\mathcal{L}_{u_{0}}^{s}$. Also, applying the results in [8] and [10], we can prove:

Theorem 1. (i) For each $u_{0} \in K_{H}, \mathcal{L}_{u_{0}}$ is maximal monotone.
(ii) If $u_{0} \in K_{H}$ and $u \in D\left(\mathcal{L}_{u_{0}}\right)$, then $u \in C([0, T] ; H)$ and $u(0)=u_{0}$.
(iii) Let $u_{0, i} \in K_{H}$ and $\left[u_{i}, g_{i}\right] \in G\left(\mathcal{L}_{u_{0, i}}\right)(i=1,2)$. Then for any s, $t \in[0, T]$ with $s \leqq t$,

$$
\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2}-\left\|u_{1}(s)-u_{2}(s)\right\|_{H}^{2} \leqq 2 \int_{s}^{t}\left(g_{1}-g_{2}, u_{1}-u_{2}\right)_{X} d r .
$$

(iv) Let $\left\{u_{0, n}\right\} \subset K_{H}$ and $\left\{\left[u_{n}, g_{n}\right]\right\}$ with $\left[u_{n}, g_{n}\right] \in G\left(\mathcal{L}_{u_{0, n}}\right)$ be sequences such that $u_{0, n} \rightarrow u_{0}$ strongly in $H, u_{n} \rightarrow u$ strongly (resp. weakly) in \mathfrak{X} and $g_{n} \rightarrow g$ weakly (resp. strongly) in \mathfrak{X}^{*} as $n \rightarrow \infty$. Then $[u, g]$ $\in G\left(\mathcal{L}_{u_{0}}\right)$ and $u_{n} \rightarrow u$ strongly in $C([0, T] ; H)$ as $n \rightarrow \infty$.
(v) Let $[u, g] \in G\left(\mathcal{L}_{u_{0}}\right)$ with $u_{0} \in K_{H}$ and $\left\{u_{0, n}\right\}$ be a sequence in $K(0)$ such that $u_{\mathrm{\theta}, n} \rightarrow u_{0}$ strongly in H as $n \rightarrow \infty$. Then there is a sequence $\left\{\left[u_{n}, g_{n}\right]\right\}$ such that $\left.\left[u_{n}, g_{n}\right]\right\} \in G\left(\mathcal{L}_{u_{0}, n}^{s}\right), g_{n} \in \mathcal{H}, g_{n} \rightarrow g$ weakly in \mathfrak{X}^{*} and $u_{n} \rightarrow u$ strongly both in $C([0, T] ; H)$ and in \mathfrak{X} as $n \rightarrow \infty$.

In addition to the assumptions we have made so far, assume that
(KII) $z_{1}+z_{2}-z_{3} \in K(t)$ for any $z_{1}, z_{2}, z_{3} \in K(t)$ and $t \in[0, T]$.
Then the following holds.
Proposition. For each $u_{0} \in K_{H}, G\left(\mathcal{L}_{u_{0}}\right)$ is convex and closed in $\mathfrak{X} \times \mathfrak{X}^{*}$ (and hence it is closed in the weak-weak topology of $\mathfrak{X} \times X^{*}$).

Next, by using the above results and a slightly modified version of [6; Theorem 2], concerning the equation $\mathcal{L}_{u_{0}} u+\mathcal{A} u \ni f$, we have:

Theorem 2. Suppose that \mathcal{A} is of type M (cf. [2]). Then for each $u_{0} \in K_{H}$, the range of $\mathcal{L}_{u_{0}}+\mathcal{A}$ is the whole of \mathfrak{X}^{*}, that is, the equation $\mathcal{L}_{u_{0}} u+\mathcal{A} u \ni f$ has a solution for every $f \in \mathfrak{X}^{*}$.

Theorem 3. If there is a function $\omega \in L^{1}(0, T)$ such that $\left(A(t) z_{1}\right.$ $\left.-A(t) z_{2}, z_{1}-z_{2}\right)_{X}+\omega(t)\left\|z_{1}-z_{2}\right\|_{H}^{2} \geqq 0$ for all $z_{1}, z_{2} \in K(t)$ and a.e. $t \in[0, T]$, then the equation $\mathcal{L}_{u_{0}} u+\mathcal{A} u \ni f$ admits at most one solution for each
$u_{0} \in K_{H}$ and $f \in \mathfrak{X}^{*}$, and the solution depends continuously on u_{0} and f.
The detailed proofs of the results mentioned above and their applications will be given in [9].

Remarks. (i) In Theorem 2, if \mathcal{A} is a pseudo-monotone operator (cf. [2]) from \mathfrak{X} into \mathfrak{X}^{*}, then the same conclusion of Theorem 2 is valid without the assumption (KII) (cf. [3; Théorème 1]).
(ii) Given $f \in \mathfrak{X}^{*}$, consider the variational problem, with periodic condition, to find $u \in \mathcal{K}$ such that $\left(v^{\prime}+\mathcal{A} u-f, u-v\right) \mathfrak{X} \leqq 0$ for all $v \in \mathcal{K}$ with $v^{\prime} \in \mathfrak{X}^{*}$ and $v(0)=v(T)$. To this problem the same type of treatment is available; in this case, we require that $K(T) \subset K(0)$, and the operator \mathcal{L}_{p} corresponding to $\mathcal{L}_{u_{0}}$ is defined by the following: $[u, g]$ $\in G\left(\mathcal{L}_{p}\right)$ if and only if $u \in \mathcal{K}, g \in \mathfrak{X}^{*}$ and $\left(v^{\prime}-g, u-v\right) \mathfrak{X} \leqq 0$ for all $v \in \mathcal{K}$ with $v^{\prime} \in \mathfrak{X}^{*}$ and $v(0)=v(T)$. For details, see [9].
(iii) In case $K(t)$ is time-independent, we find many interesting results on the problem $\left(V_{s} ; f, u_{0}\right)$ or ($V_{w} ; f, u_{0}$) formulated for $A(t)$ in various classes of nonlinear operators of montone type (e.g., [3, 4, 11]). Recently, in case $A(t)$ is the subdifferential of a proper lower semicontinuous convex function, various results on the solvability of the evolution equation $(d / d t) u(t)+A(t) u(t) \ni f(t)$ with variable domains have been established (e.g., $[1,5,7,10,12,13]$).

References

[1] H. Attouch, Ph. Bénilan, A. Damlamian, and C. Picard: Equations d'évolution avec condition unilatérale. C. R. Acad. Sci. Paris, 279, 607-609 (1974).
[2] H. Brézis: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier, Grenoble, 18, 115-175 (1968).
[3] -: Perturbations non linéaires d'opérateurs maximaux monotones. C. R. Acad. Sci. Paris, 265, 566-569 (1969).
[4] -: Problèmes unilatéraux. J. Math. Pures Appl., 51, 1-168 (1972).
[5] --: Un problème d'évolution avec contraintes unilatérales dépendant du temps. C. R. Acad. Sci. Paris, 274, 310-312 (1972).
[6] N. Kenmochi: Existence theorems for certain nonlinear equations. Hiroshima Math. J., 1, 435-443 (1971).
[7] -: Some nonlinear parabolic variational inequalities. Israel J. Math., 22, 304-331 (1975).
[8] -: Nonlinear evolution equations with variable domains in Hilbert spaces (to appear).
[9] -: Nonlinear evolution equations with time-dependent domains and applications (in preparation).
[10] N. Kenmochi and T. Nagai: Weak solutions for certain nonlinear timedependent parabolic variational inequalities. Hiroshima Math. J., 5, 525535 (1975).
[11] J. L. Lions: Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969).
[12] J. J. Moreau: Problème d'évolution associé à un convexe mobile d'un espace
hilbertien. C. R. Acad. Sci. Paris, 267, 791-794 (1973).
[13] Y. Yamada: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo, 23, 491-515 (1976).

