50. Nonlinear Parabolic Variational Inequalities with Time-dependent Constraints

By Nobuyuki KENMOCHI

Department of Mathematics, Faculty of Education, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

Let *H* be a (real) Hilbert space with the inner product $(\cdot, \cdot)_H$ and norm $\|\cdot\|_H$ in *H*, and *X* a uniformly convex Banach space with the strictly convex dual *X*^{*}, natural pairing $(\cdot, \cdot)_X : X^* \times X \to R^1$ and with norm $\|\cdot\|_X$ in *X*. Suppose that *X* is a dense subspace of *H* and the natural injection from *X* into *H* is continuous. Then, identifying *H* with its dual in terms of the inner product $(\cdot, \cdot)_H$, we have the relation $X \subset H \subset X^*$ where *H* is dense in X^* . Let $0 < T < \infty$ and $2 \le p < \infty$ with 1/p+1/p'=1, and put $\mathcal{H}=L^2(0,T;H)$ and $\mathcal{X}=L^p(0,T;X)$ with $\mathcal{X}^*=L^{p'} \cdot (0,T;X^*)$; the natural pairing between \mathcal{X}^* and \mathcal{X} is denoted by $(\cdot, \cdot)_{\mathcal{X}}$ as well.

We are given a family $\{K(t); 0 \leq t \leq T\}$ of closed convex subsets of X satisfying that

(KI) for each $r \ge 0$ there are real-valued functions $\alpha_r \in W^{1,2}(0,T)$ and $\beta_r \in W^{1,1}(0,T)$ with the following property: for each $s, t \in [0,T]$ with $s \le t$ and $z \in K(s)$ with $||z||_H \le r$ there exists $z_1 \in K(t)$ such that

 $\|z_1 - z\|_H \leq |\alpha_r(t) - \alpha_r(s)|(1 + \|z\|_X^{p/2})$

and

 $||z_1||_X^p - ||z||_X^p \leq |\beta_r(t) - \beta_r(s)|(1+||z||_X^p).$

We put K_H =the closure of K(0) in H and $\mathcal{K} = \{v \in \mathcal{X}; v(t) \in K(t)$ for a.e. $t \in [0, T]\}$.

We are also given a family $\{A(t); 0 \leq t \leq T\}$ of (nonlinear) operators from D(A(t)) = X into X^* such that

(AI) \mathcal{A} defined by $[\mathcal{A}v](t) = A(t)v(t)$ is an operator from $D(\mathcal{A}) = \mathcal{X}$ into \mathcal{X}^* and maps bounded subsets of \mathcal{X} into bounded subsets of \mathcal{X}^* ;

(AII) for each $h \in \mathcal{X}$ there are a positive number c_0 and a function $c_1 \in L^1(0, T)$ satisfying

 $(A(t)z, z-h(t))_X \ge c_0[z]_X^p - c_1(t)$ a.e. on [0, T]for all $z \in X$, where $[\cdot]_X$ is a seminorm on X such that $[\cdot]_X + \|\cdot\|_H$ gives a norm on X equivalent to $\|\cdot\|_X$.

With the above notation, given $f \in \mathcal{X}^*$ and $u_0 \in K_H$, our problem $(V_s; f, u_0)$ is to find a function $u \in \mathcal{K}$ such that

(i) $u'(=du/dt) \in \mathcal{X}^*$ and $(u' + \mathcal{A}u - f, u - v)_{\mathcal{X}} \leq 0$ for all $v \in \mathcal{K}$;

(ii) $u(0) = u_0$ (note that $u \in C([0, T]; H)$ if $u \in \mathcal{K}$ and $u' \in \mathcal{K}^*$).

This is the strong formulation, while in its weak formulation (V_w) ; f, u_0 , instead of (i) and (ii), only the following (iii) is required:

(iii) $(v' + \mathcal{A}u - f, u - v) \mathfrak{X} - ||u_0 - v(0)||_H^2/2 \leq 0$ for all $v \in \mathcal{K}$ with $v' \in \mathcal{X}^*$.

Our object is to show the existence and uniqueness of a solution to $(V_w; f, u_0)$. For this purpose we introduce the following (possibly multivalued) operator \mathcal{L}_{u_0} : $[u, g] \in G(\mathcal{L}_{u_0})$ (the graph of \mathcal{L}_{u_0}) if and only if $u \in \mathcal{K}$, $g \in \mathfrak{X}^*$ and $(v'-g, u-v)\mathfrak{X} - ||u_0 - v(0)||_H^2/2 \leq 0$ for all $v \in \mathcal{K}$ with $v' \in \mathcal{X}^*$. As is easily checked, *u* is a solution to $(V_w; f, u_0)$ if and only if it is a solution of the functional equation $\mathcal{L}_{u_0}u + \mathcal{A}u \ni f$.

Now given $u_0 \in K_H$, we consider the following operator $\mathcal{L}_{u_0}^s$ corresponding to the strong formulation of our problem: $[u, g] \in G(\mathcal{L}^s_{u_0})$ if and only if $u \in \mathcal{K}$ with $u' \in \mathfrak{X}^*$, $u(0) = u_0$, $g \in \mathfrak{X}^*$ and $(u' - g, u - v)_{\mathfrak{X}} \leq 0$ for all $v \in \mathcal{K}$. Clearly, \mathcal{L}_{u_0} is an extension of $\mathcal{L}_{u_0}^s$. Also, applying the results in [8] and [10], we can prove:

Theorem 1. (i) For each $u_0 \in K_H$, \mathcal{L}_{u_0} is maximal monotone.

(ii) If $u_0 \in K_H$ and $u \in D(\mathcal{L}_{u_0})$, then $u \in C([0, T]; H)$ and $u(0) = u_0$.

(iii) Let $u_{0,i} \in K_H$ and $[u_i, g_i] \in G(\mathcal{L}_{u_0,i})$ (i=1, 2). Then for any s, $t \in [0, T]$ with $s \leq t$,

$$||u_1(t)-u_2(t)||_H^2 - ||u_1(s)-u_2(s)||_H^2 \leq 2 \int_s^t (g_1-g_2, u_1-u_2)_X dr.$$

(iv) Let $\{u_{0,n}\} \subset K_H$ and $\{[u_n, g_n]\}$ with $[u_n, g_n] \in G(\mathcal{L}_{u_{0,n}})$ be sequences such that $u_{0,n} \rightarrow u_0$ strongly in $H, u_n \rightarrow u$ strongly (resp. weakly) in \mathfrak{X} and $g_n \rightarrow g$ weakly (resp. strongly) in \mathfrak{X}^* as $n \rightarrow \infty$. Then [u, g] $\in G(\mathcal{L}_{u_n})$ and $u_n \rightarrow u$ strongly in C([0, T]; H) as $n \rightarrow \infty$.

(v) Let $[u, g] \in G(\mathcal{L}_{u_0})$ with $u_0 \in K_H$ and $\{u_{0,n}\}$ be a sequence in K(0) such that $u_{0,n} \rightarrow u_0$ strongly in H as $n \rightarrow \infty$. Then there is a sequence $\{[u_n, g_n]\}$ such that $[u_n, g_n]\} \in G(\mathcal{L}^s_{u_0, n}), g_n \in \mathcal{H}, g_n \rightarrow g$ weakly in \mathfrak{X}^* and $u_n \rightarrow u$ strongly both in C([0, T]; H) and in \mathfrak{X} as $n \rightarrow \infty$.

In addition to the assumptions we have made so far, assume that

(KII) $z_1 + z_2 - z_3 \in K(t)$ for any $z_1, z_2, z_3 \in K(t)$ and $t \in [0, T]$. Then the following holds.

Proposition. For each $u_0 \in K_H$, $G(\mathcal{L}_{u_0})$ is convex and closed in $\mathfrak{X} \times \mathfrak{X}^*$ (and hence it is closed in the weak-weak topology of $\mathfrak{X} \times \mathfrak{X}^*$).

Next, by using the above results and a slightly modified version of [6; Theorem 2], concerning the equation $\mathcal{L}_{u_0}u + \mathcal{A}u \ni f$, we have:

Theorem 2. Suppose that \mathcal{A} is of type M (cf. [2]). Then for each $u_0 \in K_H$, the range of $\mathcal{L}_{u_0} + \mathcal{A}$ is the whole of \mathfrak{X}^* , that is, the equation $\mathcal{L}_{u_0}u + \mathcal{A}u \ni f$ has a solution for every $f \in \mathfrak{X}^*$.

Theorem 3. If there is a function $\omega \in L^1(0, T)$ such that $(A(t)z_1)$ $-A(t)z_2, z_1-z_2)_X + \omega(t) ||z_1-z_2||_H^2 \ge 0$ for all $z_1, z_2 \in K(t)$ and a.e. $t \in [0, T]$, then the equation $\mathcal{L}_{u_0}u + \mathcal{A}u \ni f$ admits at most one solution for each

No. 6]

 $u_0 \in K_H$ and $f \in \mathcal{X}^*$, and the solution depends continuously on u_0 and f. The detailed proofs of the results mentioned above and their ap-

plications will be given in [9].

Remarks. (i) In Theorem 2, if \mathcal{A} is a pseudo-monotone operator (cf. [2]) from \mathcal{X} into \mathcal{X}^* , then the same conclusion of Theorem 2 is valid without the assumption (KII) (cf. [3; Théorème 1]).

(ii) Given $f \in \mathcal{X}^*$, consider the variational problem, with periodic condition, to find $u \in \mathcal{K}$ such that $(v' + \mathcal{A}u - f, u - v)_{\mathcal{X}} \leq 0$ for all $v \in \mathcal{K}$ with $v' \in \mathcal{X}^*$ and v(0) = v(T). To this problem the same type of treatment is available; in this case, we require that $K(T) \subset K(0)$, and the operator \mathcal{L}_p corresponding to \mathcal{L}_{u_0} is defined by the following: [u, g] $\in G(\mathcal{L}_p)$ if and only if $u \in \mathcal{K}, g \in \mathcal{X}^*$ and $(v' - g, u - v)_{\mathcal{X}} \leq 0$ for all $v \in \mathcal{K}$ with $v' \in \mathcal{X}^*$ and v(0) = v(T). For details, see [9].

(iii) In case K(t) is time-independent, we find many interesting results on the problem $(V_s; f, u_0)$ or $(V_w; f, u_0)$ formulated for A(t) in various classes of nonlinear operators of montone type (e.g., [3, 4, 11]). Recently, in case A(t) is the subdifferential of a proper lower semicontinuous convex function, various results on the solvability of the evolution equation $(d/dt)u(t) + A(t)u(t) \ni f(t)$ with variable domains have been established (e.g., [1, 5, 7, 10, 12, 13]).

References

- [1] H. Attouch, Ph. Bénilan, A. Damlamian, and C. Picard: Equations d'évolution avec condition unilatérale. C. R. Acad. Sci. Paris, 279, 607-609 (1974).
- [2] H. Brézis: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier, Grenoble, 18, 115-175 (1968).
- [3] —: Perturbations non linéaires d'opérateurs maximaux monotones. C. R. Acad. Sci. Paris, 265, 566-569 (1969).
- [4] ——: Problèmes unilatéraux. J. Math. Pures Appl., 51, 1–168 (1972).
- [5] ——: Un problème d'évolution avec contraintes unilatérales dépendant du temps. C. R. Acad. Sci. Paris, 274, 310-312 (1972).
- [6] N. Kenmochi: Existence theorems for certain nonlinear equations. Hiroshima Math. J., 1, 435-443 (1971).
- [7] ----: Some nonlinear parabolic variational inequalities. Israel J. Math., 22, 304-331 (1975).
- [8] ——: Nonlinear evolution equations with variable domains in Hilbert spaces (to appear).
- [9] ——: Nonlinear evolution equations with time-dependent domains and applications (in preparation).
- [10] N. Kenmochi and T. Nagai: Weak solutions for certain nonlinear timedependent parabolic variational inequalities. Hiroshima Math. J., 5, 525– 535 (1975).
- [11] J. L. Lions: Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969).
- [12] J. J. Moreau: Problème d'évolution associé à un convexe mobile d'un espace

hilbertien. C. R. Acad. Sci. Paris, 267, 791-794 (1973).

[13] Y. Yamada: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo, 23, 491-515 (1976).