49. Studies on Holonomic Quantum Fields. IV

By Mikio Sato, Tetsuji Miwa, and Michio Jimbo
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

This is a continuation of our previous notes [1], [2] and together with the latter constitutes the second part of the work referred to in [1]. We use the same notation as in [1], [2], [3].

1. First we shall show that the wave function $\boldsymbol{w}_{F, n}={ }^{t}\left(\hat{w}_{F, n}^{1}(x)\right.$, $\cdots, \hat{w}_{F, n}^{n}(x)$) constructed in [2] forms a basis of $W_{a_{1}, \ldots, a_{n}}^{\text {strict, }}$. By (30) the local expansion of $\boldsymbol{w}_{F, n}$ in the sense of (10) in [1] takes the form

$$
\begin{equation*}
\boldsymbol{w}_{F, n} \sim \frac{i}{2}\left[\sum_{l=0}^{\infty} C_{F, l}[A]_{l} \boldsymbol{w}-\sum_{l=0}^{\infty} \bar{C}_{F, l} w_{l}^{*}[A]\right] \tag{42}
\end{equation*}
$$

where ($\left.i / 2) C_{F, l}={ }^{t}{ }^{t} \boldsymbol{c}_{l}\left(\hat{w}_{F, n}^{1}\right), \cdots,{ }^{t} \boldsymbol{c}_{l}\left(\hat{w}_{F, n}^{n}\right)\right)$. From (31) it follows that if we write $C_{F, 0}=1-T, T$ is purely imaginary and hermitian: $T=-\bar{T}$ $=-{ }^{t} T$. Since $\boldsymbol{w} \mathscr{R}$ is a basis of $W_{a_{1}, \ldots, a_{n}}^{\text {strict, }}$, there exists a real $n \times n$ matrix C satisfying $\boldsymbol{w}_{F, n}=C \boldsymbol{w} \mathcal{R}$. Comparing the 0 -th coefficients of their local expansions we have $(i / 2) C_{F, 0}=C C_{\mathcal{R}, 0}$ or equivalently $1-T=2 C e^{-H}$. Taking the complex conjugate we have $1+T=2 C e^{H}$, and hence

$$
\begin{equation*}
C=(2 \cosh H)^{-1}, \quad T=\tanh H=(1-G)(1+G)^{-1} . \tag{43}
\end{equation*}
$$

Hence $\boldsymbol{w}_{F, n}$ is also a basis of $W_{a_{1}, \ldots, a_{n}}^{\text {strict }, ~}$.
The relation between \boldsymbol{w}_{F} and $\boldsymbol{w} \mathcal{R}$ enables us to express the coefficients B, E appearing in the system (12) in [1] satisfied by $\boldsymbol{w} \mathcal{R}$, in terms of $\tau_{F, n}$ and $\tau_{F, n}^{\mu \nu}$. From (11), (40), (41) and (43) we have

$$
\begin{array}{ll}
F=\left[U^{-1} V, m A\right], & G=U\left(2 \tau_{F, n}-U\right)^{-1} \tag{44}\\
B=\sqrt{G} m A \sqrt{G^{-1}}, & E=\sqrt{G} F \sqrt{G^{-1}}
\end{array}
$$

where
(45)

$$
\begin{aligned}
& U=\tau_{F, n}(1-T)=\left(\begin{array}{cccc}
\tau_{F, n} & i \tau_{F, n}^{12} & \cdots & i \tau_{F, n}^{1 n} \\
-i \tau_{F, n}^{12} & \tau_{F, n} & \cdots & i \tau_{F, n}^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-i \tau_{F, n}^{1 n} & -i \tau_{F, n}^{2 n} & \cdots & \tau_{F, n}
\end{array}\right) \\
& V=2\left(\begin{array}{cclc}
m^{-1} \partial_{-a_{1}} \tau_{F, n} & i m^{-1} \partial_{-a_{2}} \tau_{F, n}^{12} & \cdots & i m^{-1} \partial_{-a_{n}} \tau_{F, n}^{1 n} \\
-i m^{-1} \partial_{-a_{1}} \tau_{F, n}^{12} & m^{-1} \partial_{-a_{2}} \tau_{F, n} & \cdots & i m^{-1} \partial_{-a_{n}} \tau_{F, n}^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-i m^{-1} \partial_{-a_{1}-} \tau_{F, n}^{1 n} & -i m^{-1} \partial_{-a_{2}-} \tau_{F, n}^{2 n} & \cdots & m^{-1} \partial_{-a_{n}} \tau_{F, n}
\end{array}\right] .
\end{aligned}
$$

Thus we have constructed, in terms of ψ, φ_{F} and φ^{F}, not only a solution to the extended holonomic system (12) but also one to the system of total differtntial equations (18).
2. Now we will give a closed expression for $\tau_{F, n}$ by means of solution matrices to the total differential equations (18) in [1]. From (40) and (41) we see that

$$
\begin{equation*}
\omega=d \log \tau_{F, n}=\frac{1}{2}\left(\operatorname{tr} C_{F, 1} m d A+\operatorname{tr} \bar{C}_{F, 1} m d \bar{A}\right) . \tag{46}
\end{equation*}
$$

From (13) in [1] and (43), after a little computation we rewrite (46) in the following form.

$$
\begin{align*}
\omega= & \frac{1}{2} \operatorname{tr}\left[\frac{1}{2} T \Theta-\frac{1}{2} F \Theta+m^{2}\left(-{ }^{t} G \bar{A} G+\bar{A}\right) d A\right] \tag{47}\\
& + \text { complex conjugate. }
\end{align*}
$$

We note that the 1 -form in the right hand side of (47) is shown to be a closed 1 -form and is invariant under the Euclidean motion group even for an arbitrary solution to (18) in [1].
$\hat{w}_{F, n}^{\nu_{1}, \cdots, \nu_{m}}(x)$ is written as a linear combination of the components of $\boldsymbol{w}_{F, n}$ as follows.

Comparing the local expansion of both sides of (48) we have

$$
\begin{aligned}
& =\text { Pfaffian }\left(i(\tanh H)_{\nu, \nu^{\prime}}\right)_{\nu, \nu^{\prime}}=\nu_{1}, \cdots, \nu_{m} .
\end{aligned}
$$

More generally we have
(50) $\hat{w}_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)=$ Pfaffian

Erratum in Sato-Miwa-Jimbo [3]. The expressions in paragraphs $\S 3$ and §4 should be corrected as follows.
p. 7, line 5 from the bottom:

$$
\left\langle w, w^{\prime}\right\rangle=\frac{1}{2} \int_{-\infty}^{+\infty} m d x^{1}\left(w_{+}(x) w_{+}^{\prime}(x)+w_{-}(x) w_{-}^{\prime}(x)\right)
$$

lines 4-3 from the bottom:

$$
\frac{1}{2} \int_{-\infty}^{+\infty} m d x^{1}\left(w_{+}(x) \psi_{+}(x)+w_{-}(x) \psi_{-}(x)\right)
$$

p. 8, line 13 from the bottom:

$$
\begin{aligned}
\phi_{ \pm}(u)= & \varepsilon(u) \lim _{t \rightarrow \pm \infty} \frac{i}{2} \int_{x^{0}=t} d x^{1}\left(e^{i m(x-u+x+u-1)}\left(\partial / \partial x^{0}\right) \varphi^{F}(x)\right. \\
& \left.-\varphi^{F}(x)\left(\partial / \partial x^{0}\right) e^{i m(x-u+x+u-1)}\right) .
\end{aligned}
$$

References

[1] M. Sato, T. Miwa, and M. Jimbo: Proc. Japan Acad., 53A, 147-152 (1977).
[2] ——: ibid., 153-158 (1977).
[3] -: ibid., 6-10 (1977).

