# 48. An Arithmetical Application of Elliptic Functions to the Theory of Cubic Residues 

By Mutsuo Watabe<br>Department of Mathematics, Gakushuin University, Tokyo

(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1977)

In 1845, G. Eisenstein [2] proved the biquadratic reciprocity law in $\boldsymbol{Q}(\sqrt{-1})$ using the Gauss lemniscate function, and in 1921, G. Herglotz [4] proved the quadratic reciprocity law in the same field using the complex multiplication of the Weierstrass elliptic functions. In the same line of ideas, K. Shiratani [7] proved the cubic and biquadratic reciprocity laws in the fields $\boldsymbol{Q}(\sqrt{-3})$ and $\boldsymbol{Q}(\sqrt{-1})$ respectively, and he proved in [8] also a complementary law for the 4 -th power residues. We also proved it in [9] using the complex multiplication of another elliptic function than that used in [8]. We used namely the Gauss lemniscate function

$$
f(z)=\operatorname{sn}(2-2 i) \omega z \quad \text { with } \quad \omega=\int_{0}^{1} \frac{1}{\sqrt{1-x^{4}}} d x
$$

In this paper, we shall prove a complementary law for the cubic residues in $\boldsymbol{Q}(\sqrt{-3})$ using the complex multiplication of a certain elliptic function $f\left(z \mid w_{1}, w_{2}\right)$ defined below. It should be noticed that G. Eisenstein obtained in [1] the complementary laws for the cubic residues in a more general setting with elementary methods, as Gauss did for the biquadratic residues in [3].
$\S$ 1. Let $\mathscr{P}\left(z \mid w_{1}, w_{2}\right)$ be the Weierstrass elliptic function with fundamental periods $w_{1}, w_{2}$, with $\operatorname{Im}\left(w_{1} / w_{2}\right)>0$. We consider the following function:

$$
\begin{equation*}
f\left(z \mid w_{1}, w_{2}\right)=\prod_{j=1}^{4}\left(\mathscr{P}\left(z \mid w_{1}, w_{2}\right)-\mathscr{P}\left(\left.\frac{w_{j}}{3} \right\rvert\, w_{1}, w_{2}\right)\right) \tag{1}
\end{equation*}
$$

where $w_{3}=w_{1}+w_{2}, w_{4}=w_{1}+2 w_{2}$. Then the following divisor equivalence holds:

$$
\begin{equation*}
f\left(z \mid w_{1}, w_{2}\right) \simeq-8(0)+\sum_{j=1}^{4}\left(\frac{w_{j}}{3}\right)+\sum_{j=1}^{4}\left(\frac{-w_{j}}{3}\right) \tag{2}
\end{equation*}
$$

The ring $\mathcal{O}$ of integers of Eisenstein's field $\boldsymbol{Q}(\sqrt{-3})$ has a $Z$-basis $[\rho, 1]$, where $\rho=(-1+\sqrt{-3}) / 2$. We take $\left(w_{1}, w_{2}\right)=(\rho, 1)$. Then we have easily the complex multiplication formula:
(3)

$$
f(\rho z \mid \rho, 1)=\rho f(z \mid \rho, 1)
$$

For brevity, we write $f(z)=f(z \mid \rho, 1)$. We consider the integer $\nu, \mu$ in $\mathcal{O}$ with $(\nu, \mu)=(\nu, 3)=1$. Because of $(\nu, 3)=1$, we have $\mathcal{O} /(\nu)=\left\{0, M_{\nu}\right.$, $\left.\rho M_{\nu}, \rho^{2} M_{\nu}\right\}$, where $M_{\nu}$ is a $1 / 3$-system modulo $\nu$ as defined in [6]. Since
$(\nu, \mu)=1$, there exists $\beta^{\prime} \in M_{\nu}$ such that $\mu \beta \equiv \zeta_{\beta}^{(\mu)} \beta^{\prime}(\bmod \nu)$ for arbitrary $\beta \in M_{\nu}$, where $\zeta_{\beta}^{(\mu)}$ is a cubic root of unity. Then, by the Gauss lemma [6], the cubic residue symbol $(\mu / \nu)_{3}$ can be expressed as follows:

$$
\begin{equation*}
\left(\frac{\mu}{\nu}\right)_{3}=\prod_{\beta \in M_{\nu}} \zeta_{\beta}^{(\mu)} . \tag{4}
\end{equation*}
$$

Then, in virtue of (3), (4), we have

$$
\begin{equation*}
\left(\frac{\mu}{\nu}\right)_{3}=\prod_{\beta \in M_{\nu}} \frac{f(\mu(\beta / \nu))}{f(\beta / \nu)} \tag{5}
\end{equation*}
$$

Another simple consequence of (3), (4) is the following complementary law :

$$
\left(\frac{\rho}{\nu}\right)_{3}=\rho^{(N \nu-1) / 3}
$$

for $(\nu, 3)=1$.
We want to evaluate

$$
\begin{equation*}
\left(\frac{1-\rho}{\nu}\right)_{3}=\prod_{\beta \in M_{\nu}} \frac{f((1-\rho) \beta / \nu)}{f(\beta / \nu)} \tag{6}
\end{equation*}
$$

From the definition (1) of $f(z)$, we have easily

$$
\begin{align*}
& \frac{f((1-\rho) z \mid \rho, 1)}{f(z \mid \rho, 1)}=\frac{\left(1 /(1-\rho)^{8}\right) f(z \mid \rho /(1-\rho), 1 /(1-\rho))}{f(z \mid \rho, 1)} \\
& \quad \simeq-9\left(\frac{4 \rho+1}{9}\right)-9\left(\frac{\rho+2}{9}\right)+\left(\frac{\rho+2}{9}\right)+\left(\frac{2 \rho+2}{9}\right)+\left(\frac{4 \rho+8}{9}\right) \\
& \quad+\left(\frac{2 \rho+1}{9}\right)+\left(\frac{4 \rho+2}{9}\right)+\left(\frac{8 \rho+4}{9}\right)+\left(\frac{\rho+8}{9}\right)+\left(\frac{2 \rho+7}{9}\right)  \tag{7}\\
& \quad+\left(\frac{\rho+5}{9}\right)+\left(\frac{7 \rho+2}{9}\right)+\left(\frac{8 \rho+1}{9}\right)+\left(\frac{5 \rho+1}{9}\right)+\left(\frac{4 \rho+5}{9}\right) \\
& \quad+\left(\frac{5 \rho+4}{9}\right)+\left(\frac{7 \rho+5}{9}\right)+\left(\frac{8 \rho+7}{9}\right)+\left(\frac{5 \rho+7}{9}\right)+\left(\frac{7 \rho+8}{9}\right) .
\end{align*}
$$

Hence $(f((1-\rho) z \mid \rho, 1)) / f(z \mid \rho, 1)$ has neither zero point nor pole on the straight line $l$ joining 0 and $1+\rho$ and on the real axis $\boldsymbol{R}$.

We define the function $g(z \mid \rho, 1)$ as follows:

$$
\begin{equation*}
g(z \mid \rho, 1)=\frac{f((1-\rho) z \mid \rho, 1)}{f(z \mid \rho, 1)} . \tag{8}
\end{equation*}
$$

For simplicity, we shall write $g(z)$ for $g(z \mid \rho, 1)$. Then, in virtue of (6), (8), we get

$$
\begin{equation*}
\left(\frac{1-\rho}{\nu}\right)_{3}=\prod_{\beta \in M_{\nu}} g\left(\frac{\beta}{\nu}\right) \tag{9}
\end{equation*}
$$

§2. It seems to be a very difficult problem to determine the value of $((1-\rho) / \nu)_{3}$ for arbitrary $\nu$ in $\mathcal{O}$ by this method. However, we can determine it for $\nu=a \in Z,(a, 3)=1$ as follows. In this case, it is easily seen that we may suppose that $\beta \in M_{a}$ lies in $S$ or on the line joining 0 and $|a| / 3$, where $S$ is the interior of the regular hexagon with the vertices:

$$
0, \frac{|a|}{3}, \frac{|a|}{3}(2+\rho), \frac{2|a|}{3}(1+\rho), \frac{|a|}{3}(1+2 \rho), \frac{|a|}{3} \rho .^{*}
$$

$S$ is symmetric with respect to $l$, and the function $g(z)$ has the following properties.

1) If $x \in \boldsymbol{R}, \rho g(x)$ is real and positive.

In fact,

$$
\begin{aligned}
\overline{\rho g(x)} & =\bar{\rho} \frac{f((1-\bar{\rho}) x \mid \bar{\rho}, 1)}{f(x \mid \bar{\rho}, 1)}=\frac{1}{\rho} \cdot \frac{f\left(\rho^{-1}(1-\rho) x \mid \rho, 1\right)}{f(x \mid \rho, 1)} \\
& =\rho \frac{f((1-\rho) x)}{f(x)}=\rho g(x), \quad \text { in virtue of (3). }
\end{aligned}
$$

Thus we have $\rho g(x) \in \boldsymbol{R}$.
To show that $\rho g(x)>0$, we have only to prove $\rho g(0)>0$, because $g(x)$ has neither zero point nor pole on $\boldsymbol{R}$. Now

$$
\begin{aligned}
\rho g(0) & =\left.\rho \frac{f((1-\rho) z)}{f(z)}\right|_{z=0}=\rho \lim _{z \rightarrow 0} \frac{z^{8} f((1-\rho) z)}{z^{8} f(z)} \\
& =\frac{\rho}{(1-\rho)^{8}}=\frac{1}{3^{4}}>0 .
\end{aligned}
$$

2) $\rho g(z)$ takes real positive values on $l$; i.e., $\rho g((1+\rho) x) \in \boldsymbol{R}$ and $\rho g((1+\rho) x)>0$ for $x \in \boldsymbol{R}$.

As $\rho g(0)>0$, it is sufficient to show $\rho g((1+\rho) x) \in \boldsymbol{R}$. Now we have

$$
\begin{aligned}
\overline{\rho g((1+\rho) x)} & =\bar{\rho} \frac{f((1-\bar{\rho})(1+\bar{\rho}) x \mid \bar{\rho}, 1)}{f((1+\bar{\rho}) x \mid \bar{\rho}, 1)}=\frac{1}{\rho} \cdot \frac{f\left(\rho^{-2}\left(1-\rho^{2}\right) x \mid \rho, 1\right)}{f\left(\rho^{-1}(1+\rho) x \mid \rho, 1\right)} \\
& =\rho \frac{f((1-\rho)(1+\rho) x)}{f((1+\rho) x)}=\rho g((1+\rho) x),
\end{aligned}
$$

again in virtue of (3).
3) If $z$ and $z^{\prime} \in C$ are symmetric with respect to $l$, then $g\left(z^{\prime}\right)$ $=\rho \overline{g(z)}$.

In fact,

$$
\begin{aligned}
\rho \overline{g(z)} & =\rho \frac{f((1-\bar{\rho}) \bar{z} \mid \bar{\rho}, 1)}{f(\bar{z} \mid \bar{\rho}, 1)}=\frac{f\left(\rho^{2}(1-\rho) \bar{z} \mid \rho, 1\right)}{f(\bar{z} \mid \rho, 1)} \\
& =\rho^{2} \frac{f((1-\rho) \rho \bar{z})}{f(\bar{z})}=\frac{f((1-\rho) \rho \bar{z})}{\rho f(\bar{z})} \\
& =\frac{f((1-\rho) \rho \bar{z})}{f(\rho \bar{z})}=\frac{f\left((1-\rho) z^{\prime}\right)}{f\left(z^{\prime}\right)}=g\left(z^{\prime}\right) .
\end{aligned}
$$

Now, we shall compute $((1-\rho) / a)_{s}$ according to (9). As this value is on the unit circle, we have only to take into account the argument of $g(\beta / a)$.

The number of the $\beta^{\prime}$ s on the line joining 0 and $|a| / 3$ is $[|a| / 3]$. The argument of $g(\beta / a)$ for these $\beta$ 's is the same as that of $1 / \rho$, in virtue of 1 ) above. There are $[2|a| / 3] \beta$ 's on the line joining 0 and $2|a|(1+\rho) / 3$, and 2$)$ says that $g(\beta / a)$ for these $\beta^{\prime}$ 's have again the same argument as $1 / \rho$.

The total number of $\beta^{\prime} \mathrm{s}$ in $M_{a}$ is $(N a-1) / 3=\left(a^{2}-1\right) / 3$ and there remain $\left(a^{2}-1\right) / 3-[|a| / 3]-[2|a| / 3] \beta^{\prime} s$ in $S$ which are not on $l$, i.e., $\left\{\left(a^{2}-1\right) / 3-[|a| / 3]-[2|a| / 3]\right\} / 2$ pairs of $\beta^{\prime}$ s, lying symmetrically with respect to $l$. The argument of $g(z) g\left(z^{\prime}\right)$ is the same as that of $\rho=1 / \rho^{2}$ in virtue of 3 ).

Thus we have

$$
\begin{aligned}
\left(\frac{1-\rho}{a}\right)_{3} & =\prod_{\beta \in M_{a}} g\left(\frac{\beta}{a}\right) \\
& =\left(\frac{1}{\rho}\right)^{[|a| / 3]}\left(\frac{1}{\rho}\right)^{[2|a| / 3]}\left(\frac{1}{\rho^{2}}\right)^{\left\{\left(a^{2}-1\right) / 3-[|a| / 3]-[2|a| / 3] / 2\right.} \\
& =\left(\frac{1}{\rho}\right)^{\left(a^{2}-1\right) / 3} \\
& = \begin{cases}\rho^{(a-1) / 3} & \text { for } a \equiv 1(\bmod 3), \\
\rho^{2(a+1) / 3} & \text { for } a \equiv 2(\bmod 3) .\end{cases}
\end{aligned}
$$

Acknowledgment. The author owes remark *) to Professor Hideo Wada, whereas his original choice of $M_{a}$ was more complicated.

## References

[1] G. Eisenstein: Nachtrag zum kubischen Reciprocitätssatz für dritten Wurzeln der Einheit zusammengesetzten komplexen Zahlen. Kriterien des kubischén Charakters der Zahl 3 und ihrer Teiler. J. für reine u. angew. Math., 28, 28-35 (1844).
[2] -: Applications de l'algèbre à l'arithmétique. J. für reine u. angew. Math., 29, 177-184 (1845).
[3] C. F. Gauss: Theoria residuorum biquadraticorum. II. .Göttinger Abh., 7 (1832).
[4] G. Herglotz: Über das quadratische Reziprozitätsgesetz in imaginären quadratischen Zahlkörpern. Leipziger Berichte Math. Phys. Klasse, 73, 303-310 (1921).
[5] T. Kubota: Some arithmetical applications of an elliptic function. J. für reine u. angew. Math., 214/215, 141-145 (1964).
[6] H. Reichardt: Eine Bemerkung zur Theorie des Jacobischen Symbols. Math. Nachr., 19, 171-175 (1958).
[7] K. Shiratani: Die Diskriminante der Weierstraßschen elliptischen Funktionen und das Reziprozitätsgesetz in besonderen imaginärquadratischen Zahlkörpern. Abh. Math. Sem. Univ. Hamburg, 31, 51-61 (1967).
[8] -: Über eine Anwendung elliptischer Funktionen auf das biquadratische Reziprozitätsgesetz. J. für reine u. angew. Math., 268/269, 203209 (1974).
[9] M. Watabe: An arithmetical application of elliptic functions to the theory of biquadratic residues (to appear in Abh. Math. Sem. Univ. Hamburg).

