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Toyama Technical College

(Communicated by K6saku YOSID., M.Z.A., Oct. 12, 1977)

1. Denote by Hn, the set of all polynomials of degree n or less,
and by H,(k<=n), the set of all P eH satisfying P)(x)>__O on [0, 1].
Define En(f)=infeneH IIf-Pnll and E,(f)=infneH., IIf--Pll, where
]" is the supremum norm of functions continuous on [0, 1].

Many authors have investigated on the degree of monotone approx-
imation. For instance, see [1]-[4], [6]-[9]. We would like to prove the
inequality

( 1 ) E,(f) <=--vE_(f())
for f e C[0, 1]. Here C denotes a positive constant depending upon
k. This result is true or the unconstrained degree of approximation
En(f).

For the function x/ (n-----I, 2, ...) that increases on [--1, /1],
R.A. DeVore [1] proved the following: Let a=log4--1 and
--log 2, with a=2+3. Then there exist constants C, C.0, such
that

Cln"2-2<=E2,l(x2+l)<=C2n2-, n--l, 2,....
However we have

E2n-(xn) --II x2n x2n 2-(n-)C.n(X))II- 2-
where Cn(x) is the Chebyshev polynomial of degree 2n. Hence, in this
case, (1) does not hold for k=l. For x+ vanishes at x=0.

J. A. Roulier [6] examined this problem and proved the following:

(i) For f e C[0, 1] with ff(x)O on [0, 1], we have

E,x(f)<= 5 E_(f’), n>=N(f).
2n/2

For any k=2, 3, and f e C[0, 1] with f()(x)O on [0, 1],(ii)
we have

E,(f) =< 2E_(f()), n>=N(f k),
n

N(f, k) denoting a certain positive integer depending upon f and k.
The purpose of this paper is to prove that the inequality (1) holds

under the assumption of Roulier.
2. Theorem. For any k--I,2,.., and f e C[0,1] satisfying

f()(x) :>0 on [0, 1], we have
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E,(f)<=E_(f()), n>=N(f k),

with C depending only on k.
Proof. Let Q_(x) be the polynomial of best approximation from

H_ to f()(x) on [0, 1]. For a fixed integer n (n>=k), we define

(x) Q_(t)dtdx_. dx-f(x).

Because of ()(x)=Q_(x)-f()(x)eC[0,1], and by using the
results of Trigub [10] (see also Malozemov [5]), we see that there exists
a P eH with the properties

i()__pr)ii
n- (), r=0, 1,...,k,

where C is a constant depending only on k, and (g,.) is the modulus
of continuity. Putting r=0, we get

. Cl_(f,=_(Z).
When , we obtain for 0N N 1

P)(x) <)(x) +C( )
(2) :Qn_(x)-f()(x)+Cw((), )

Qn_(x)-f(’() + CE_(f(’).
Define

Q_(t)dtdX_l dx P(x).

Thus, we have a sequence of, polynomials P(x) e Hn such that
f(x) P(x) (x) P(x)

= C’ E_(f()) on [0, 1].

Further, using (2) and f()(x)>0 on [0, 1], we have for 0gxN1
P()(x) Q_(x) P()(x)

f()(x) CEn_(f()).
By the polynomial approximation theorem o Weierstrass, the right
hand term is =0 for n=N(f, k). This completes the proof.. The case k=l in the theorem follows from the stronger in-
equality

E,(f) CE(f), n=N(f),
which was shown by J. A. Roulier [7].

I would like to express my hearty thanks to Professor R. A. DeVote
for his kind advice.
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