42. Studies on Holonomic Quantum Fields. III

By Mikio Sato, Tetsuji Miwa, and Michio Jimbo
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1977)

In this note we report along with [1] the work presented in [2]. Further results along the present line will be given in subsequent papers.

We follow the same notations as in [1] and [3] unless otherwise stated. In this article, along with the 2 -dimensional space-time ($=$ Minkowski 2 -space) and its complexification, to be denoted by $X^{\text {min }}$ and X^{c} respectively, we also deal with the Euclidean 2-space $X^{\text {Euc }}$ consisting of complex Minkowski 2-vectors $x \in X^{c}$ such that $x^{0}\left(=-i x^{2}\right) \in i \boldsymbol{R}$ and $x^{1} \in \boldsymbol{R}$, i.e. such that $\mp x^{\mp}\left(=\left(\mp x^{0}+x^{1}\right) / 2\right)$ are complex conjugate to each other; we have $z=-x^{-}, \bar{z}=x^{+}, \partial_{z}=\partial / \partial z$ and $\partial_{z}=\partial / \partial \bar{z}$.

1. Let W be an orthogonal vector space, and $W=V^{\dagger} \oplus V$ be its decomposition into two holonomic subspaces with basis (ψ_{μ}^{\dagger}) and (ψ_{μ}) as in §2 [3]. $V\left(r e s p . V^{\dagger}\right)$ generates maximal left (resp. right) ideal $A(W) V$ (resp. $V^{\dagger} A(W)$) of the Clifford algebra $A(W)$. The quotient modules $A(W) / A(W) V$ and $A(W) / V^{\dagger} A(W)$ are generated by the residue class of 1 modulo $A(W) V$ resp. $V^{\dagger} A(W)$ (which we shall denote by |vac \rangle and $\langle\mathrm{vac}|$ respectively after physicists' notation) and coincide with $A\left(V^{\dagger}\right)$ $|\mathrm{vac}\rangle$ and $\langle\mathrm{vac}| A(V)$ since we have $V|\mathrm{vac}\rangle=0$ and $\langle\mathrm{vac}| V^{\dagger}=0$. Otherwise stated, they are respectively spanned by elements of the form $\left|\nu_{n}, \cdots, \nu_{1}\right\rangle \underset{\overline{\text { def }}}{ } \psi_{\nu_{n}}^{\dagger} \cdots \psi_{\nu_{1}}^{\dagger}|\mathrm{vac}\rangle$ and $\left\langle\nu_{1}, \cdots, \nu_{n}\right|=\overline{\overline{\text { def }}}\langle\mathrm{vac}| \psi_{\nu_{1}} \cdots \psi_{\nu_{n}}, n=0,1,2$, \cdots, and indeed these elements constitute mutually dual basis of both spaces: $\left\langle\mu_{1}, \cdots, \mu_{m} \mid \nu_{n}, \cdots, \nu_{1}\right\rangle=0$ if $m \neq n$, $=\operatorname{det}\left(\delta_{\mu_{i \nu}}\right)$ if $m=n$.

Let g be an element of the Clifford group $G(W)$. The rotation in W induced by $g, T_{g}: w \mapsto g w g^{-1}$, is even or odd (i.e. $\operatorname{det} T_{g}=+1$ or -1) according as corank $T_{4}=$ even or odd; in particular for a generic even/odd $g \in G(W)$ we have corank $T_{4}=0 / 1$ and expression (3)/(4) in [3] for $N(g)$. An element $w \in W$ itself belongs to $G(W)$ if and only if $\langle w, w\rangle \neq 0$, in which case we have $w g \in G(W)$. First consider an even generic g, so that we have, with the abbreviation $\langle g\rangle_{\overline{\text { def }}}\langle\mathrm{vac}| g|\mathrm{vac}\rangle$,

$$
\begin{gather*}
N(g)=\langle g\rangle e^{L}, \quad L=\frac{1}{2}\left(\psi^{\dagger} \psi\right)\left(\begin{array}{cc}
S_{1}-1 & S_{2} \\
S_{3} & S_{4}-1
\end{array}\right)\binom{{ }^{t} \psi}{-{ }^{t} \psi^{t}} \tag{21}\\
{ }^{t} S_{1}=S_{4}, \quad{ }^{t} S_{2}=-S_{2}, \quad{ }^{t} S_{3}=-S_{3}
\end{gather*}
$$

where $S_{g}=\left(\begin{array}{ll}S_{1} & S_{2} \\ S_{3} & S_{4}\end{array}\right)$ is related to $T_{g}=\left(\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right)$ through the reciprocal formulas

$$
\begin{align*}
& S_{g}=\left(\begin{array}{cc}
1 & -T_{2} \\
& 1
\end{array}\right)\left(\begin{array}{ll}
T_{1} & \\
& T_{4}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & \\
T_{3} & 1
\end{array}\right) \\
& T_{g}=\left(\begin{array}{cc}
1 & -S_{2} \\
& 1
\end{array}\right)\left(\begin{array}{ll}
S_{1} & \\
& S_{4}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & \\
S_{3} & 1
\end{array}\right) \tag{22}
\end{align*}
$$

Then we have, letting $w=\left(\psi^{\dagger} \psi\right)\binom{c^{\dagger}}{c}$,

$$
\begin{array}{ll}
N(w g)=\langle g\rangle w_{1} e^{L}, & w_{1}=\left(\psi^{\dagger} \psi\right)\binom{c^{\dagger}+S_{2} c}{S_{4} c}, \\
N(g w)=\langle g\rangle w_{2} e^{L}, & w_{2}=\left(\psi^{\dagger} \psi\right)\binom{S_{1} c^{\dagger}}{c+S_{3} c^{\dagger}} . \tag{24}
\end{array}
$$

For an odd generic g^{\prime} (so that $N\left(g^{\prime}\right)=w_{0} e^{L}$ with $w_{0} \in W$), the composition $w g^{\prime}$ or $g^{\prime} w$ gives an even one, and

$$
\begin{array}{ll}
N\left(w g^{\prime}\right)=\left\langle w w_{0}\right\rangle e^{L_{1}}, & L_{1}=L+\frac{1}{\left\langle w w_{0}\right\rangle} w_{1} \wedge w_{0} \\
N\left(g^{\prime} w\right)=\left\langle w_{0} w\right\rangle e^{L_{2}}, & L_{2}=L+\frac{1}{\left\langle w_{0} w\right\rangle} w_{0} \wedge w_{2} \tag{26}
\end{array}
$$

where w_{1} and w_{2} are given by (23) and (24) respectively, using $S=S_{g}$, $N(g)=e^{L}$.

It should be noted also that T_{g} and $T_{g^{\prime}}$ commute if and only if g, g^{\prime} $\in G(W)$ either commute or anticommute.

Applying the above formulas to the case $w=\psi_{ \pm}(x)$ and $L=L_{F}(a)$, we have, for w_{1} in (23) and (25),

$$
\begin{equation*}
w_{1}=\int_{-\infty}^{+\infty} d u \xi_{ \pm}(x-a ; u) e^{-i m(a-u+a+u-1)} \psi(u) \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
\xi_{ \pm}(x ; u)= & \sqrt{0+i u^{ \pm 1}} e^{-i m\left(x^{-u+x+u-1)}\right.} \\
& +\int_{0}^{\infty} \underline{d u^{\prime}} \sqrt{0+i u^{\prime \pm 1}} e^{-i m\left(x-u^{\prime}+x^{+} u^{\prime}-1\right)} \frac{i\left(u+u^{\prime}\right)}{u-u^{\prime}-i 0} .
\end{aligned}
$$

Then $\xi=\binom{\xi_{+}}{\xi_{-}}$is analytically continued to the complex region of x such that $\operatorname{Im} x^{ \pm}<0$, satisfies the Dirac equation $\partial_{x \pm} \xi_{ \pm}= \pm m \xi_{\mp}$ there, and shows a strict Fermi-type behavior at $x=0$ in the Euclidean region. Indeed we have

$$
\begin{align*}
\xi(x ; u)= & \frac{1}{2}\left(w_{0}\left(-x^{-}, x^{+}\right)+w_{0}^{*}\left(-x^{-}, x^{+}\right)\right) \tag{28}\\
& +\sum_{l=1}^{\infty}\left((i u)^{l} w_{l}\left(-x^{-}, x^{+}\right)+(i u)^{-l} w_{l}^{*}\left(-x^{-}, x^{+}\right)\right) .
\end{align*}
$$

Combining (23) $\sim(28)$ we obtain the following operator expansions for $\psi(x) \varphi_{F}(\alpha)$ and $\psi(x) \varphi^{F}(\alpha)$:

$$
\begin{align*}
N\left(\psi(x) \varphi_{F}(a)\right)= & \varphi_{0}^{F}(a) \frac{1}{2}\left(w_{0}[a]+w_{0}^{*}[a]\right) \tag{29}\\
& +\sum_{l=1}^{\infty}\left(\varphi_{l}^{F}(a) w_{l}[\alpha]+\varphi_{-l}^{F}(a) w_{l}^{*}[\alpha]\right), \\
N\left(\psi(x) \varphi^{F}(a)\right)= & e^{L_{F}(a)} \frac{i}{2}\left(w_{0}[a]-w_{0}^{*}[\alpha]\right) \tag{30}
\end{align*}
$$

$$
+\sum_{l=1}^{\infty}\left(\varphi_{F, l}(\alpha) w_{l}[\alpha]+\varphi_{F,-l}(\alpha) w_{l}^{*}[\alpha]\right),
$$

where

$$
\begin{align*}
& \varphi_{l}^{F}(a)=\psi_{l}(a) e^{L_{F}(a)}, \quad \varphi_{F, l}(a)=\psi_{l}(a) \psi_{0}(a) e^{L_{F}(a)}, \\
& \psi_{l}(a)=\int_{-\infty}^{+\infty} d u(i u)^{l} e^{-i m(a-u+a+u-1)} \psi(u) \quad(l \in Z) . \tag{31}
\end{align*}
$$

Here $w_{l}[\alpha]$ denotes $w_{l}\left(-x^{-}+a^{-}, x^{+}-a^{+}\right)$and similarly for $w_{l}^{*}[\alpha]$. Since the norm is linear,

$$
N\left(d \varphi_{F}\right)=d N\left(\varphi_{F}\right)=d L_{F} \cdot e^{L_{F}} \quad \text { and } \quad N\left(d \varphi^{F}\right)=\left(d \psi_{0}+\psi_{0} d L_{F}\right) e^{L_{F}}
$$

Noting the relations $d L_{F}(a)=\left(-i \psi_{1}(a) d\left(-a^{-}\right)+i \psi_{-1}(a) d a^{+}\right) \psi_{0}(a)$ and $d \psi_{l}(a)=\psi_{l+1}(a) m d\left(-a^{-}\right)+\psi_{l-1}(a) m d a^{+}$, we obtain

$$
\begin{gather*}
N\left(d \varphi_{F}(a)\right)=-i \varphi_{F, 1}(a) m d\left(-a^{-}\right)+i \varphi_{F,-1}(a) m d a^{+}, \tag{32}\\
N\left(d \varphi^{F}(a)\right)=\varphi_{1}^{F}(a) m d\left(-a^{-}\right)+\varphi_{-1}^{F}(a) m d a^{+} . \tag{33}
\end{gather*}
$$

Finally we give the commutation relations satisfied by our field operators when placed in mutually space-like positions.

First, the above mentioned fact that g and $g^{\prime} \in G(W)$ either commute or anti-commute if T_{g} and $T_{g^{\prime}}$ commute, together with the Lorentz covariance of φ_{F} and φ^{F}, yields micro-causality for φ_{F} and φ^{F} :

$$
\begin{equation*}
\varphi_{F}(x) \varphi_{F}\left(x^{\prime}\right)=\varphi_{F}\left(x^{\prime}\right) \varphi_{F}(x), \quad \varphi^{F}(x) \varphi^{F}\left(x^{\prime}\right)=\varphi^{F}\left(x^{\prime}\right) \varphi^{F}(x), \tag{34}
\end{equation*}
$$ for $\left(x^{\prime}-x\right)^{2}<0$.

Of course, ψ satisfies

$$
\begin{equation*}
\psi(x) \psi\left(x^{\prime}\right)=-\psi\left(x^{\prime}\right) \psi(x), \quad \text { for }\left(x^{\prime}-x\right)^{2}<0, \tag{35}
\end{equation*}
$$

or more precisely

$$
\begin{align*}
& \left(\begin{array}{ll}
{\left[\psi_{+}(x), \psi_{+}\left(x^{\prime}\right)\right]_{+}} & {\left[\psi_{+}(x), \psi_{-}\left(x^{\prime}\right)\right]_{+}} \\
{\left[\psi_{-}(x), \psi_{+}\left(x^{\prime}\right)\right]_{+}} & {\left[\psi_{-}(x), \psi_{-}\left(x^{\prime}\right)\right]_{+}}
\end{array}\right) \\
& \quad=m^{-1}\left(\begin{array}{cc}
\partial_{x-} & m \\
-m & \partial_{x^{+}}
\end{array}\right) \Delta\left(x-x^{\prime} ; m^{2}\right) \tag{36}
\end{align*}
$$

where

$$
\Delta\left(x ; m^{2}\right)=i \int_{-\infty}^{\infty} d u \varepsilon(u) e^{-i m\left(x^{-}-u+x^{+}+u^{-1}\right)}=\left\{\begin{array}{cl}
\varepsilon\left(x^{0}\right) J_{0}\left(m \sqrt{x^{2}}\right) & x^{2}>0 \\
0 & x^{2}<0 .
\end{array}\right.
$$

On the other hand, the definition (6) in [3] of φ_{F} reads: $T_{\varphi_{F}(x)}\left(\psi\left(x^{\prime}\right)\right)$ $= \pm \psi\left(x^{\prime}\right)$ if $\left(x^{\prime}-x\right)^{2}<0$ and $x^{\prime 1}-x^{1} \lessgtr 0$ (i.e. if $x^{\prime+} \gtrless x^{+}$and $x^{\prime-} \lessgtr x^{-}$), while φ^{F} is defined by $T_{\varphi^{F}(x)}\left(\psi\left(x^{\prime}\right)\right)=\mp \psi\left(x^{\prime}\right)$ with the same x and x^{\prime}. These definitions are readily rewritten as follows:

$$
\begin{align*}
& \varphi_{F}(x) \psi\left(x^{\prime}\right)= \pm \psi\left(x^{\prime}\right) \varphi_{F}(x), \tag{37}\\
& \varphi^{F}(x) \psi\left(x^{\prime}\right)=\mp \psi\left(x^{\prime}\right) \varphi^{F}(x), \quad \text { for } x^{\prime+} \gtrless x^{+}, x^{\prime-} \lessgtr x^{-} .
\end{align*}
$$

(34) and (37), when combined with (29) and (30), now yield

$$
\begin{equation*}
\varphi_{F}(x) \varphi^{F}\left(x^{\prime}\right)= \pm \varphi^{F}\left(x^{\prime}\right) \varphi_{F}(x) \quad \text { for } x^{\prime+} \gtrless x^{+}, x^{\prime-} \lessgtr x^{-} \tag{38}
\end{equation*}
$$

2. We now proceed to construction of the wave functions of $W_{a_{1}, \ldots, a_{n}}^{\text {strict }}$ in terms of our field operators φ_{F}, φ^{F} and ψ. Let x_{1}, \cdots, x_{k}, a_{1}, \cdots, a_{n} be $k+n$ Minkowski 2-vectors in mutually space-like positions. We introduce the k-fold wave functions with n branch points, $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}$ ($x_{1}, \cdots, x_{k} ; a_{1}, \cdots, a_{n}$), for any ordered subset (ν_{1}, \cdots, ν_{m}) of indices $\{1, \cdots, n\}$, as follows. Namely, if $m=0$ we define

$$
\begin{aligned}
w_{F, n}\left(x_{1}, \cdots,\right. & \left.x_{k} ; a_{1}, \cdots, a_{n}\right) \\
& =\langle\operatorname{vac}| \psi\left(x_{1}\right) \cdots \psi\left(x_{k}\right) \varphi_{F}\left(a_{1}\right) \cdots \varphi_{F}\left(a_{n}\right)|\operatorname{vac}\rangle
\end{aligned}
$$

and in general, we define $\operatorname{sgn}\binom{\nu_{1}, \cdots, \nu_{m}}{\nu_{1}^{\prime}, \cdots, \nu_{m}^{\prime}} w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k} ; a_{1}, \cdots, a_{n}\right)$ (where $\left\{\nu_{1}, \cdots, \nu_{m}\right\}=\left\{\nu_{1}^{\prime}, \cdots, \nu_{m}^{\prime}\right\}$ and $\nu_{1}^{\prime}<\cdots<\nu_{m}^{\prime}$) to be a similar expression as above, with $\varphi_{F}\left(a_{\nu}\right)$ within the bracket being replaced by $\varphi^{F}\left(a_{\nu}\right)$ for $\nu=\nu_{1}, \cdots, \nu_{m}$. If $k=0$, our $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}$ should also be denoted by $\tau_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\left(a_{1}, \cdots, a_{n}\right)$, since for $m=0$ (resp. $m=n$) it reduces to the n-point τ-function of φ_{F} (resp. φ^{F}) discussed in [3]. We often drop parameters a_{1}, \cdots, a_{n} and denote them by $w_{F, n}^{\nu, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)$ and $\tau_{F, n}^{\nu_{2}, \cdots, \nu_{m}}$. Also we use

$$
\hat{w}_{F, n}^{\nu_{1}^{\nu}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)=w_{F, n}^{\nu_{F}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right) / \tau_{F, n},
$$

and

$$
\hat{\tau}_{F, n}^{\nu_{1}, \cdots, \nu_{m}}=\tau_{F, n}^{\nu_{1}^{\prime}, \cdots, \nu_{m}} / \tau_{F, n} .
$$

Note that all these quantities represent 0 if $k+m$ is odd.
From (29), (30) and (37) it follows that our wave functions admit the local expansion of the form (3) with $l_{0}=0$ at each of a_{1}, \cdots, a_{n}, i.e. of the following form in the style of (10):
(39) $\quad \hat{w}_{F, n}^{\nu_{1}, \cdots, \nu_{m}}(x) \sim \sum_{l=0}^{\infty} \boldsymbol{c}_{l}\left(\hat{w}_{F, n}^{\left.\nu_{1}, \cdots, \nu_{m}\right)} w_{l}[A]+\sum_{l=0}^{\infty} \boldsymbol{c}_{i}^{*}\left(\hat{w}_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\right) w_{l}^{*}[A]\right.$, and that the coefficients $c_{l}\left(\hat{w}_{F, n}^{\left.\nu_{1}, \ldots, \nu_{m}\right)}\right.$ in this expansion are expressed in terms of τ-functions. Namely assuming $\nu_{1}<\ldots<\nu_{m}$ and $\left(a_{\nu}-a_{\nu}\right)^{+}>0$ for $\nu>\nu^{\prime}$, the μ-th component of $c_{0}\left(\hat{w}_{F, n}^{\nu, \cdots, \nu_{m}}\right)$ is

$$
(-)^{\sharp\left(\{1, \cdots, \mu-1\} \cap\left\{\nu_{1}, \cdots, \nu_{m}\right\}\right)} \begin{cases}(1 / 2))_{F}^{\nu_{1}}, \cdots, \nu_{k}, \mu, \nu_{k+1}, \cdots, \nu_{m} & \text { if } \nu_{k}<\mu<\nu_{k+1}, \tag{40}\\ (i / 2) \hat{\tau}_{F}^{\nu+n}, \cdots, \nu_{k}-1, \nu_{k+1}, \cdots, \nu_{m} & \text { if } \nu_{k}=\mu,\end{cases}
$$

while from (32) and (33)

$$
\begin{align*}
& { }^{t}\left(\tau _ { F , n } \boldsymbol { c } _ { 1 } \left(\hat{w}_{F, n}^{\left.\left.\nu_{12}, \cdots, \nu_{m}\right)\right)}\right.\right. \\
& \quad=2\left(\begin{array}{lll}
m^{-1} \partial_{\left(-a_{\overline{1}}^{-}\right)} & & \\
& & m^{-1} \partial_{\left(-a_{\bar{n}}\right)}
\end{array}\right)^{t}\left(\tau_{F, n} \cdot \boldsymbol{c}_{0}\left(\hat{w}_{F, n}^{\left.\nu_{1}, \cdots, \nu_{m}\right)}\right) .\right. \tag{41}
\end{align*}
$$

We note that (35) together with positive-definiteness of the inner product in $W_{a_{1}, \ldots, a_{n}}^{\text {strict }}$, yields several inequalities among Euclidean τ functions.

The analytic prolongability of the vacuum expectation〈vac| $\cdot \cdot \mid$ vac〉 (or of any matrix element) of product of field operators in their arguments is well-known. Indeed, consider $\langle\operatorname{vac}| \psi(x) \varphi^{F}(a)|v a c\rangle$ for example, and expand it into

$$
\begin{aligned}
\sum_{l=0}^{\infty} & \frac{1}{l!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \underline{d u_{1} \cdots \underline{d u_{l}}\langle\operatorname{vac}| \psi(0)\left|u_{l} \cdots u_{1}\right\rangle} \\
& \times\left\langle u_{1} \cdots u_{l}\right| \varphi^{F}(0)|\operatorname{vac}\rangle e^{-i m\left(\left(x^{-}-a^{-}\right) U+\left(x^{+}-a^{+}\right) U^{\prime}\right)}
\end{aligned}
$$

with $U=u_{1}+\cdots+u_{l}$ and $U^{\prime}=u_{1}^{-1}+\cdots+u_{l}^{-1}$, and we shall see that this quantity is analytically prolonged to the complex region of x and a satisfying $\operatorname{Im}\left(x^{ \pm}-a^{ \pm}\right)<0$. (Note that no role is played by the accidental fact that $\langle\operatorname{vac}| \psi(0)\left|u_{l} \cdots u_{1}\right\rangle=0$ for $l \neq 1$.) The same reasoning
yields that our wave function $w_{F, n}^{\mu_{1}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)$, as the vacuum expectation of the product $\psi\left(x_{1}\right) \cdots \psi\left(x_{k}\right) \varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)$, with φ standing either for φ_{F} or for φ^{F}, admits an analytic prolongation to the region $Y^{k+n, C}$ of complexified arguments $x_{1}, \cdots, x_{k}, a_{1}, \cdots, a_{n}$ defined as follows:

$$
Y^{n, C}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in\left(X^{c}\right)^{n} \mid \operatorname{Im} x_{\nu}^{ \pm}<\operatorname{Im} x_{\nu^{\prime}}^{ \pm} \text {for } \nu<\nu^{\prime}\right\},
$$

where $\left(X^{c}\right)^{n}$ stands for the Cartesian product of n copies of X^{c}, the complexified space-time. We also set $Y^{n, E u c}=Y^{n, c} \cap\left(X^{\mathrm{Euc}}\right)^{n}$. Note that they are convex cones in $\left(X^{c}\right)^{n}$ resp. in ($\left.X^{\text {Euc }}\right)^{n}$, and hence simply connected. From the above reasoning we also see that for a_{1}, \cdots, a_{n} fixed and $\operatorname{Im} x^{ \pm}$tending to $-\infty$, the wave function $w_{F, n}^{\nu_{1}, \ldots, \nu_{m}}(x)$ tends to 0 exponentially.

The commutation relation (37) between $\psi(x)$ and $\varphi(a)$ implies that, if $(x-a)^{2}=4\left(x^{+}-a^{+}\right)\left(x^{-}-a^{-}\right)<0$,

$$
\langle\operatorname{vac}| \cdots \psi(x) \varphi_{F}(\alpha) \cdots|\mathrm{vac}\rangle=\varepsilon\left(x^{+}-a^{+}\right)\langle\operatorname{vac}| \cdots \varphi_{F}(a) \psi(x) \cdots|\mathrm{vac}\rangle
$$

and

$$
\langle\operatorname{vac}| \cdots \psi(x) \varphi^{F}(\alpha) \cdots|\mathrm{vac}\rangle=\varepsilon\left(x^{-}-\alpha^{-}\right)\langle\operatorname{vac}| \cdots \varphi^{F}(a) \psi(x) \cdots|\mathrm{vac}\rangle .
$$

Since

$$
\langle\operatorname{vac}| \cdots \psi(x) \varphi(\alpha) \cdots \mid \text { vac }\rangle \quad \text { and }\langle\operatorname{vac}| \cdots \varphi(a) \psi(x) \cdots \mid \text { vac }\rangle
$$

are already known to be analytically prolonged to $\operatorname{Im}\left(x^{ \pm}-a^{ \pm}\right)<0$ and to $\operatorname{Im}\left(x^{ \pm}-a^{ \pm}\right)>0$ respectively, the above equalities imply that our $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)$, when prolonged to $Y^{k+n, c}$ and then restricted to $Y^{k+n, \text { Euc }}$, is analytically prolongable in both ways, but with opposite signs, around each $\left\{x_{k}=a_{\nu}\right\}$.

The commutation relation (38) between φ_{F} and φ^{F} have exactly the same effect as above, while those within ψ^{\prime} 's, φ_{F} 's and φ^{F} 's have even simpler consequences on the property of our wave functions: analytic prolongability with no discrepancy of sign around each $\left\{x_{k}=x_{k^{\prime}}\right\}$ etc. Summing up, we conclude that Euclidean $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}\left(x_{1}, \cdots, x_{k}\right)$, originally defined in $Y^{k+n, \text { Euc }}$, is analytically prolongable to a doublevalued function (whose 2 values differring only in signs) on the whole $\left(X^{\mathrm{Euc}}\right)^{k+n}$ with its singularities appearing only along $\left\{x_{\kappa}=x_{\kappa^{\prime}}\right\},\left\{a_{\nu}=a_{\nu^{\prime}}\right\}$, and $\left\{x_{\kappa}=a_{\nu}\right\}$ with $\kappa, \kappa^{\prime}=1, \cdots, k$ and $\nu, \nu^{\prime}=1, \cdots, n$, where the last ones and part of the second correspond to branch points.

The (Euclidean) wave function $w_{F, n}^{\nu_{1}, \ldots, \nu_{m}}(x)$, with its parameters a_{1}, \cdots, a_{n} being distinct and fixed in X^{Euc}, is now a double-valued analytic function in $X^{\mathrm{Euc}}-\left\{a_{1}, \cdots, a_{n}\right\}$. Notice that the local expansion formula (39) does also imply the double-valued nature of our wave function around each a_{ν}; in fact it implies an even stronger fact that $w_{F, n}^{\nu, \cdots, \nu_{m}}(x)$ is of strict Fermi-type at each a_{ν}. We already know that $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}(x)$ tends to 0 exponentially at infinity in X^{Euc}. We can show further, by employing (13) and (14) in [3], that $w_{F, n}^{\nu_{1}, \ldots, \nu_{m}}(x)$ is real. We now conclude that our $w_{F, n}^{\nu_{1}, \cdots, \nu_{m}}(x)$ belongs to $W_{a_{1}, \cdots, a_{n}}^{\text {strict, }}$.

References

[1] M. Sato, T. Miwa, and M. Jimbo: Proc. Japan Acad., 53A, 147-152 (1977).
[2] --: RIMS (preprint) 225 (1977).
[3] -: Proc. Japan Acad., 53A, 6-10 (1977).

