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41. Studies on Holonomic Quantum Fields. II

By Mikio SATO, Tetsuji MWA, and Michio JIMB0
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by K.6saku YOSIDA, M.J.A., Oct. 12, 1977)

This is a continuation of our preceding work [1] on the construc-
tion and study of models of holonomic quantum fields. The present
work consists of two parts and is presented in three separate notes
accordingly.

The first part included here is a mathematical preliminary concern-
ing deformation of a holonomic system, which seems to be of its own
interest We consider the space wm of double-valued solutions toal,...,a

the 2-dimensional Euclidean Dirac equation satisfying suitable growth
order conditions at the branch points a, ..., a and at c. After es-
tablishing its finite dimensionality, we derive a holonomic system of
first order linear differential equations satisfied by a basis of Wstrtct

o,l...ag

The coefficients appearing in these equations are functions of a, ., a
and are shown to satisfy a completely integrable system of total dif-
ferential equations.

Applying these results, we show in the coming second part that
the n-point r-functions of the fields and constructed in [1] are ex-
pressible in terms of the solutions to the total differential equations
derived in II- 4. This generalizes the remarkable result of [2] which
says that the 2-point functions of and have closed expressions in
terms of the Painlev function of the third kind. Also we derive some
algebraic relations between various vacuum expectation values of pro-
ducts of the fields 4x, and .

In this note we deal with the Euclidean 2-space R2={(x, x2)}. We
x + ix x ixuse the coordinate z=,=and set ,=/z, =/.

2 2
1o Consider the 2-dimensional Euclidean Dirac equation with

positive mass m

(1) (m F)w O, 1-’ ++
Denote by the sheaf of 2 X 2 matrices of differential operators, and set
.q)o= {P e )1 7.Pc} where =(m--F). Then 0 is the unique
maximal subring of containing as its bi-ideal, and if w satisfies
(1), so does Pw for P e -q)0. We have _q)0 + C[3, , M], where ,

1(1 ) are the infinitesimal generators of theand Mt,=zO+--O+ --1
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Euclidean motion group. A solution w to (1) is called a wave function,
and it is said to be real if w*-=-w, where the .-conjugation is defined

by w*--(-) For/e C we set+
v+/(z,

where v, v=eI(mr), z, =(1/2)re (rO) and I(mr) denotes the
modified Bessel function of the 1st kind. These are solutions to (1)
with the properties w=mw_, w=mw+, w=mw+,
=mw_, Mw=lw and Mrw=-lw. Moreover any (multi-valued)
local solution w at (z,)=(a, a) such that w(a+e(z-a),a+e-(-a))
=e,+w(z,) and w=O(z-a’-)([z-a[O) or some loeC is
uniquely expanded in the form
(3) w= cw[a]

$l rood Z l-lo mod

if/01/2 modZ, where w[a]=w(z-a, -) and w[a]=w(z-a, -).
In the case 10 1/2 mod Z, the expansion takes the form
(4) w= (cw[a] + cw[a]) + ([]+a[a]),

11/2 rood Z lml/2 rood
max (1/2,/o) lo1/2

where and are constructed from , :e+K(mr) in a similar
way, and if/0:1/2 we replace the assumption ]w:O(]z-a-/2) by
[w[:O(log[z-a[). We say w is of Fermi-type at (a,a) if l0 e Z, and
of strict Fermi-type if further 100.

2. Let W,...,/w,.,,..., denote the set of wave functions which
are of Fermi-/ strict Fermi-type at (a,a)(p:l,...,n) and which
behave like O(e-2’) as [z[. More precisely an element w e W,,...,
is a function defined on the 2-fold ramified covering manifold

(, e, , )1- (--,)=0, -- (e-g)=0 o R, which is odd i.e.
=1 1

changes sign under (, e, , )(, e, --, -) and which satisfies (1)
outside he branch oins (, g, O, O) e (=1, ., ). Since 0, O and

belong o ,, W,..., is lef C[O,, , ]-module. Nor w e W,...,
we denote by e[(w) (rest.
in he loeal expansion (8) a (e, ge). We denote by ,...,
real elements in W aking
the "strict Fermi" condition is equivalent to the Dirac equation with
point sources

k 2

k--3. 2m/ kc’(w) ]()() (#=1, .,n).

Wstrtet, R we setFor w, w’ e al,...,a

1 Re +w++w_’_)I(w w’)=
4 -=,(5)

+1 ,=1 Rer4imdd(w++w_[)
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where V (__<1, I_-< r} with sufficiently small r> >= 0. Then I(, ) defines
a positive definite symmetric inner product on w, In terms ofal...an"

c(w)=(cli)(w), ., cln)(w)) i is given by
1

miSdS.w+w+I(w, w’)=
2 =

Consequently the map Wt, 9 Weo(W) e C is injective, and since its
image does not contain isotropic elements, we have dim w, <n.
Later in III- 2 we shall construct explicitly n independent elements of

using our operators @ and Y [1] Existence of such a basis
is also shown by the following argument. First by the method of
orthogonal projection we construct on solutions v,, , (#=1,..., n)
to the Euclidean Klein-Gordon equation (m--88)v=0 with the pro-
perties v, ,=O(e-’) ([z[) and

-.v_/[a] + +.v,[a] +...
at (a, ) (#, u 1, ..., n). Setting a (a,) and fl (fl,) we find that a a
and that fl=fl-=- is negative definite, in other words --fl=e" with
a unique H H H. Let K (k,) be a non-singular matrix satisfy-

{ (w; defined by w=w;ing Kfl--K, e.g. K=ie . Then w=xw;/=,...,---- k.v. provides a basis o wt,..,,...,..
There is a natural map (C[3,3]/(m--33w‘]] al..Wl...

defined by p(3, 3)@wp(3,3)w, which is clearly injective. Let us
show that it is also surjective. For any w e W,,...,. let eo(w), e(w)
be its coefficient vectors of the first term in the local expansion (3).
Since K is non-singular, there exist row vectors k, k*e C such that
eto(W) k. K, e(w) k* K. Then

w =w- +
satisfies et(w())=0, e(w())=0 or lglo. Continuing this process
(-10+ 1)-times we have w(-+) ew and e0(w(-+))=0, e(w(-+))
=0, which imply w(-+)=0. Thus we have

( 7 ) (C[3 3]/(m w

Let {w.}.=,.., be a basis of wt, and set =t(w. w).
Then or each =1, .., n, Mw e W,,...,.-C[0,- wt,..,,...,., whence it
follows rom (7) that there exist unique constant n x n matrices B, E
with E=--E so that
( 8 ) M--(Bm-3--Bm-3+E)
holds. Equation (8) together with the Dirac equation (1) constitutes
the holonomic system for . Denote by C=(c)(w)),,=,..., the matrix
of the/-th coefficients in the local expansion (3). By introducing C(3)
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=7-: C(m-’a,) we write as
--0

( 9 ) ,C(8,)wo[A] + (3,)w0*[A] =] C,w,[A] + ,w*[A],
-0 =0

where A=(#) and w[A](resp, w*[A]) denotes the diagonal matrix
(w[a])(resp. (w*[a])). In terms of C() equation (8) reduces to
PC(8,) C(3)P0 where we have set P=M,-Bm-13,+ Bm-3,-E, P0 My
--A3,+8, or equivalently, to
(10) BC CmA (1--1--E)C_+BC,_--C,_m,
with C=0 for l<0. In particular for/=0, 1, 2 we have

CEXBCo=mA, C;ECo [CC, mA],
(11) CEC-CC+mz-ComCo [CC, mA].
From the argument in 2, there exists a unique basis for which the
operator C(3)=C(3) satisfies C,o-=i/---=ie- and C,oC,=o
=*(C,0C,). In this case *B=B and *E=-E, as seen from (11).

Consider in general a holonomic system of the form
(12) (m-/)=0, (M,--Bm-3,+Bm-3--E),=O,
where ,= t(w, .., w), *B=B, *E-- -E-E and the eigenvalues

{ma,,}v=,...,, of B are assumed to be distinct. The characteristic variety
of (12) is confined to the union of conormal bundles of z--a,=O or

--a=0 (/2=1, ..., n). At (z, ) e R--{(a,, a)}__,..., (12) admits 2n in-
dependent real regular local solutions, which are analytically continued
to the universal covering manifold of R--{(a,,a,)},=,...,,. At (z,)
=(a, av) there exist 2(n--1) independent regular solutions and two of
strict Fermi-type. This means that the monodromy representation on
the space el/ of real solutions defined on the universal covering manifold
(13) x(R2_{(a,, v)}v__,...,,)--,GL(C-R),
takes the form Cr,=U;( -)U, for some U,, e GL(2n, R), where12n-2
7v denotes a cycle encircling (a, a) in the positive direction.

The case corresponding to m is of special character; namely, the
monodromy representation (13) is reducible, and c contains one
dimensional subspace whose generator is of strict Fermi-type at every

(av, av) (/= 1, ..., n) and decreases exponentially at
4. For fixed distinct a,..., a, m satisfies a holonomic system

(12) with B and E such that B=e-nmAe, H=H=-H and E=E
=--E. Now we consider how H and E depend on a, ..-, a.
and3 (/= 1, ..., n) belong to W,,..., hence (7) shows that there
exists a unique first order differential operator whose coefficients are
n n matrices of 1-forms in (A, )
(14) [2 m-a,+q3m-+"so that d=Da. Here we denote by d the exterior differentiation
with respect to (A, ). The local expansion of d takes the form
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--C,omdAw_[A] + (dC,o- C,mdA)wo[A] + + ,-conjugates.

C,o,Hence we have -----C,omdAC,o and =dC,oC,o+ [C, - ].
We now study in general a solution to (12) whose dependence on

parameters is governed by
(15) dw=w
with 9 given by (14) where and are supposed to satisfy [, B]=O
and -’==. The coupled equations (12)+(15) yield O=d(Pw)
=dP.w+P.dw=(dP--[9, P])w, O=d(dw)=(d9-)Ag)w. We now as-
sume that P and/2 satisfy

(16) dP--[Y2, P]--O, dl"2--Ag--O mod .q)(m-3),
or equivalently, the following completely integrable system of total dif-
ferential equations for functions of (A, A)"

dB----+ [, B] + [, E] dq--[q, ]+
(17) dB---/ [, B] + [, E] d--[,

dE [, B] [, B] + [, E] d-- [q, ] + +/,
and conclude that they guarantee the consistency of our extended
holonomic system (12) + (15) for w(z, A, A). Namely if B, E, and

satisfy (17), there exists a system of 2n independent solutions (w
.., w()) to (12) which satisfy dw(" tow (") (/ 1, ..., 2n). For the case

w=w, equation (16) is a consequence of (7) since dP--[9, P] and
tOA9 belong to C[, ] (or more precisely to C[, ](R){n n matrices

of exterior differential forms in A, A}).
Let the analytic continuation of (w(), w() along a cycle . be

given by (w(), ..., w(’))Cr. We then have d[(w(), ..., w())Cr] =9[(w
.., w(’))Cr], and hence dC=O. This means that the monodromy .re-

presentation (13) stays constant along each integral manifold of (17).
Asymptotic behavior of w(z, ; A,]) at ]z[=c (on each sheet of the
covering space) is also invariant along each integral manifold.

For later convenience we rewrite (17) as follows. First we see that
=--e-nmdA.e and =de-n.en+e-nOen where 0 is a skew-sym-

metric matrix of l-forms characterized by [A,O]+[dA, eEe-n]=O.
(17) now reduces to

dF [F, O] +m[dA, tG.G] +m[A, tGd G]
(18)

dG- -GO+ )G, dO=OA0+m[dA, tGd.. G]+
where G=e- and F=enEe-. We remark that in the case n=2 (18)
reduces to the restricted Painlev equation of the third kind with =0
in [3].
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