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A Complex Analogue o the Generalized
Minkowski Problem

By Mikio ISE*)

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1977)

1. Recently, A. V. Pogorelov [5, 6] announced to have solved the
generalized Minkowski problem using the idea of E. Calabi, as was also
mentioned in our lecture [3]. It was a key point o solving this problem
to reduce it to finding solutions of certain non-linear elliptic partial
differential equations defined over the unit sphers S (n >_ 2), which we
called in [3] as of the generalized Monge-Ampre type. In the present
note we will show that the framework of finding solutions of the dif-
ferential equation mentioned above can be applied analogously also in
the case of n-complex projective space P$ (n>_l), instead of the unit
sphere. To describe our motivation o studies, we have first to resume
and explain the differential equations over S appearing in the general-
ized Minkowski problem which suits to our purpose.

Namely, we denote by the unknown C-function of n-variables
u, u, ..., u, that is in reality defined over the whole S; in fact, if we
write the current co-ordinates of the ambient euclidean space R/ as
(0,, "",) and cover S by the co-ordinates patches U={:/=0}
(0_<i_ n). In every U, we put u=o/, u2=/, ..., u=/,
whereby one considers the differential operator D"
(1) D()=II--2 det( 0q ) (0<i<n),

3uSu
then D (0<ign) yield the differential operator D defined globally over
the sphere S. The generalized Minkowski problem or an n-dimen-
sional compact, convex oriented hypersurface V (n>2) is concerned
with the following partial differential equation on S
( 2 ) D() ,
where a given positive function on S is assumed to satisfy the con-
ditions"

,.dS=O (O<_i<_n),

dS denoting the volume element ot S with respect to the natural metric
of S’ (The equation () has been known from old times, when =, as
the simplest form ot the so-called Monge-Ampgre equations [8]). In the
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situation delivered above, one has now to find the elliptic solutions
o the equation (2); namely by an elliptic solution we mean the solu-
tion whose hessian (3/3uu) is positive definite everywhere on S",
and A. V. Pogorelov solved this problem. We want to emphasize here
that the operator D can be defined intrinsically or arbitrary rieman-
nian manifolds (see [3, 8]). In act, we can ormulate as

D() det (Hess () +.I)
where the symmetric tensor field, Hess (), of type (1.1) is given by
Hess ().X=Vx(grad ) for every C-vector field X, and I designates
the identity one. This definition of the operator D, originally due to
N. Tanaka [8], can be proved to coincide with that given in (1), because
we readily infer that the following formula holds:
( 3 ) grad Is grad +.,
where we denote by grad the usual gradient vector field of the func-
tion that is considered as the homogeneous function of degree one
over R/-{0} extended from e C(S) as usual.

2. In this note, we shall be concerned with a complex analogue
of the equation (2). Namely, denoting by C/ (n_>2) the complex
cartesian space with the complex co-ordinates (0, , "", ), we con-
sider the odd-dimensional unit sphere S/ in C/ such that

s/={=(0, , ..., ) e c /; E.--0 I =}.
Thus we may now consider the equation (2) with respect to the unknown
function on S/, which we write as
( 4 ) /() Z,
for some (known) positive function .

Our situation in the present one is a somewhat special one" Name-
ly let us take e C(P$) and put =o e C(S+), where u denotes the
natural projection of S+ onto the complex projective space P, whose
homogeneous co-ordinates being regarded as (0,,’" ",). Then

" S+P is a principal C-fibre bundle with the group T={t e C;
Itl=l}, thus we have now to assume that
( 5 ) is invariant under the action of T, and positive everywhere.
From this condition we can infer easily the following relation"

( 6 ) [ .$dS=O (O<_i_n),
dSn+

where dS denotes the volume element o S/ as used in the preceding
section. In act, we see

where T=z-(z) or z e P$ designates the fiber on z e P$ (TTP, t e T
and dP the volume element of P defined in the canonical manner. It
is easily verified that the integral over T always vanishes or any z,
thus (6) is derived rom (5). Under the condition (5), we can show by
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using the so-called continuity method, as was utilized in [2, 4, 8], the
ollowing

Theorem 1. There is a unique C-elliptic solution on S+
which is invariant under the action of T for a given positive function
satisfying the condition (5).
From this theorem, it follows immediately our results or P; in

act, the differential operator D turns out to induce in a natural manner
the differential operator D on C(P). Thus, if we consider the dif-
ferential equation on P or any given positive unction "
( 7 ) D()=,
then, we obtain as an immediate consequence of Theorem 1.

Theorem 2. The equation (7) has the unique C-elliptic solution

for any given C-positive function , whereby the solution is elliptic
in the sense that the G.teaux derivative dD# of D at is a linear elliptic
dif]erential operator (see [7]).

3. We shall sketch here, and also in the next section, an outline
of the proofs of Theorems 1, 2. For this sake, we need to consider the
space F of all C-functions of M--S2+ which are invariant under T,
and further we have to introduce two Fr6chet spaces with the C-topology"

K={ eF; >0},
/0= {g e/; (4) has a T-invariant solution }.

Following the principle of the continuity method, we first prove the so-
called openness (see [2, 4, 8]). Namely, putting/--{ e/; is elliptic},
we take e/, z e/0 such that /)()--z as in (4). Then, we are now
concerned with the. partial differential equation with the unknown
unction on ]r./(+)=z’, where z’ e/ and z’--z=z" is assumed
to be so small in the sense of the C-topology; namely taking the differ-
ence we get

D(+)--/()=".
The let-hand side o this equation can be decomposed into the two
parts; the first one L() is defined as the linear part with respect to, where L is an elliptic linear differential operator acting on the space
/ and coincides with the Gteaux derivative d/) of/) at , while the
second one/() is the remaining term with the higher degree with
respect to . Thus we may rewrite the above as ollows"
( 8 ) L() "-//().
Here, we are in a position to utilize the general theory of linear elliptic
partial differential equations on M, and then the iteration method,
which was carried out also in [4, 8]; namely we start from 0=0 and
then define inductively the C-functions (k= 1, 2, .) by a solution
of the following equation"
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e P)
in act, is uniquely determined as

()=y 6(, V)f()"
In this formula, G(, ) denotes the Green function of the T-invariant
elliptic operator L6 with reference to the space F. Hence we infer
obviously that the Green operator ()"(,), and also each
belongs to . The existence of a solution of (8), for a small ", is
thus assured by the existence of the limit of the sequence {} as was
done in [4,8]; in act, if we take lim_=, then evidently
satisfies (8). This proves the openness.

4. To prove the so-called closedness in the continuity method [2,
4, 6]. We need, as was done for (2) in [4, 6], to establish the so-called
a priori estimate o the solution of (4), or o (7). For this sake, we
can utilize the result of A. V. Pogorolov, via the bundle diagram (9)
in the next section namely, for e , we have ]]+ ]]+ in
the sense of the usual C+"-Banach norms. Thus, the closedness in
our case is an immediate consequence of that in the Minkowski problem.

The uniqueness in Theorems 1, 2 is derived rom the fact that, in
the equation (2), the solutions are unique up to translations in R
(see [1]), and also from that the solutions have to be invariant under
T. As or this point, we should like to mention the results due to
J. Moser and T. Sunada [7], which assert that, if the solution space
of dD()=0 is of O-dimension or a given elliptic solution then so is
for the solution space of (7).

5. We should now like to proceed to clarify the geometric mean-
ings of the solution in (7), as was known for the solutions in (2);
namely or the latter case, grad =(/0,’’ ",/) yields a convex
imbedding of S into R+ when one considers as the unction ex-
tended over R+--(0} as a homogeneous unction of degree 1. For this
purpose, we have here to recall the canonical (minimal) imbedding of
P (=M) into the space H+ (=R) consisting of (n+l)-hermitian
matrices with trace 1 (N=n+2n). As is well-known (see [9]), the
mapping is induced rom the mapping of M into H.+ such that
[(0, , ", )=() or =(0,, ", ) e M we present explicitly
these situations by the diagram given below"

C+M

M-. >R =H+.
Now, we shall return to the solution o (7). For ny C-solution, we consider the lift= z nd the hermitian matrix (a"), where

,=/3 and is extended over C+--{O} as before. Then, this
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matrix-valued C-function, defined on M (restricted to M), is invariant
under the action of T. Therefore it induces a C-mapping that is
in fact an imbedding of P (=M) into H/ (=R)

[ qa .]; Ilgradl]2=,(0,"’ ", n)-- .llgr--ll --o

Namely gives rise to a family of imbeddings of P into H+.c On the
other hand, we know that the canonical imbedding is known to be
elliptic in the sense of Tanaka [9], thus we suppose that there will be
certain intimate relations between the positive function in (7) and
some kind of curvature of ,(M) in R. We hope that we shall be able
to discuss in the near future with these geometric problems, not only
over P$ but also over more general compact spaces.
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