35. Congruences of the Eigenvalues of Hecke Operators

By Kazuyuki Hatada
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1977)

Introduction. This note is a continuation of our previous note on the divisibility by 2 of the eigenvalues of Hecke operators [1]. We will omit the proofs of the theorems in this note. Details will appear in K. Hatada "On the eigenvalues of Hecke operators" [3].
§ 1. Let S_{w+2} be the space of cusp forms of weight $w+2$ on $S L(2, Z)$. Let λ_{p} be any eigenvalue of the Hecke operator $T(p)$ on S_{w+2} where p is a rational prime. In K. Hatada [1] we proved the following Theorem 1 and announced Theorem 2:

Theorem 1. λ_{p} is divisible by 2 for any rational prime p and for any even weight $w+2$.

Theorem 2. (i) λ_{p} is divisible by 4 for any prime p with $p \equiv-1$ $\bmod 4$ and for any even weight $w+2$.
(ii) $\left(\lambda_{p}-2\right)$ is divisible by 4 for any prime p with $p \equiv+1 \bmod 4$ and for any even weight $w+2$.

Prof. J.-P. Serre sent us some experimental results, computed on a machine, which are proved by Theorems 2, 4 and 5 in this note.

Later he sent his conjectures compatible with the known results (see Remark 1 below), which are proved by Theorems 3 and 6. The author wishes to express his gratitude to Prof. Serre for his suggestions.

In §1 of this note we give congruences for eigenvalues of the Hecke operators on S_{w+2}. They are Theorems 3-9.

Let λ_{p} be any eigenvalue of the $T(p)$ on S_{w+2}.
Theorem 3. $\lambda_{p} \equiv 1+p \bmod 8$, for any odd prime p and for any even weight $w+2$.

Theorem 4. $\quad \lambda_{2}$ is divisible by 8 for any even weight $w+2$.
Theorem 5. (i) λ_{2} is divisible by 16 for any weignt $w+2$ such that $w \equiv 0 \bmod 4$.
(ii) λ_{2} is divisible by 32 for any weight $w+2$ such that $w \equiv 0 \bmod 4$ and $w \neq 0 \bmod 8$.

Theorem 6. $\lambda_{p} \equiv 1+p \bmod 3$ for any rational prime p except for $p=3$ and any even weight $w+2$.

Theorem 7. λ_{3} is divisible by 3 for any even weight $w+2$.
Theorem 8. $\lambda_{11} \equiv 2 \bmod 5$ for any even weight $w+2$.
Theorem 9. $\lambda_{19} \equiv 0 \bmod 5$ for any even weight $w+2$.
Remark 1. Let $\operatorname{tr} T(p)_{w+2}$ be the trace of the $T(p)$ on S_{w+2}. A few
years ago Prof. Serre and Prof. Tate obtained the results that
$\operatorname{tr} T(p)_{w+2}=(1+p) \operatorname{dim}_{c} S_{w+2} \bmod 8 \quad$ for any prime $p(\neq 2)$,
and that
$\operatorname{tr} T(p)_{w+2} \equiv(1+p) \operatorname{dim}_{C} S_{w+2} \bmod 3 \quad$ for any prime $p(\neq 3)$.
Next Propositions 1, 2 and 3 are obtained by trace formula.
Proposition 1. $\operatorname{tr} T(5)_{w+2} \equiv 0 \bmod 5$
for any even weight $w+2$.
Proposition 2. $\operatorname{tr} T(7)_{w+2} \equiv 0 \bmod 7$
for any even weight $w+2$.
Proposition 3.

$$
\operatorname{tr} T(11)_{w+2} \equiv \begin{cases}1 \bmod 11 & \text { if } w \equiv-1 \bmod 11 \\ 0 \bmod 11 & \text { if } w \equiv-1 \bmod 11\end{cases}
$$

These propositions are obtained by Proposition 1 in M. Koike (Nagoya Math. Journal Vol. 56 (1973) 45-52).
§ 2. We consider in this § 2 congruences for eigenvalues of Hecke operators on cusp forms for some congruence subgroups $\subset S L(2, Z)$. The results given in this § 2 are not directly suggested by Prof. Serre, but they are related to the theorems in § 1 of this paper.

1) We set $S_{w+2}(\Gamma(2))=$ the space of cusp forms of weight $w+2$ on $\Gamma(2)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, Z) \right\rvert\, a \equiv d \equiv 1 \bmod 2\right.$ and $\left.b \equiv c \equiv 0 \bmod 2\right\}$. Let λ_{p} be any eigenvalue of the Hecke operator $T(p)$ on $S_{w+2}(\Gamma(2))$. Then we have

Theorem 10. $\lambda_{p} \equiv 1+p \bmod 4$ for all odd primes p and for any even weight $w+2$.

Let $S_{w+2}\left(\Gamma_{0}(N)\right)$ be the space of cusp forms of weight $w+2$ on $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)|N| c, a d-b c=1\right\}$.
2) Let λ_{p} be any eigenvalue of the $T(p)$ on $S_{w+2}\left(\Gamma_{0}(3)\right)$.

Theorem 11. λ_{p} is divisible by 2 for any odd prime p (at least except for $p=3$) and for any even weight $w+2$.

Theorem 12. $\lambda_{p} \equiv 1+p \bmod 3$ for any odd prime $p(\neq 3)$ and for any even weight $w+2$.
3) Theorem 13. Any eigenvalue of the Hecke operators $T(p)$ on $S_{w+2}\left(\Gamma_{0}(6)\right)$ is divisible by 2 for any rational prime p with $p \equiv 1 \bmod 3$ and for any even weight $w+2$.

Remark 2. Similar results to Theorem 11 hold for $S_{6}\left(\Gamma_{0}(5)\right)$ and $S_{4}\left(\Gamma_{0}(5)\right)$.
§3. There are congruences of eigenvalues obtained from the ratio of the periods of primitive forms. (The basic reference is Manin [5].) Let $f \in S_{w+2}^{0}\left(\Gamma_{0}(N)\right)$ be any primitive form. Set $f=\sum_{n=1}^{+\infty} a_{n} \exp 2 \pi$ inz. Set

$$
\begin{aligned}
R(l, g) & =\operatorname{Re} \int_{0}^{i \infty}(f \mid[g])(z) z^{l} d z \\
I(l, g) & =\operatorname{Im} \int_{0}^{i \infty}(f \mid[g])(z) z^{l} d z
\end{aligned}
$$

We set $S L(2, Z)=\bigcup_{j=1}^{m} \Gamma_{0}(N) g_{j}$, the left coset decomposition. We showed in [2] that both the ratio of $\left\{R\left(l, g_{k}\right)\right\} 0 \leqq l \leqq w, 1 \leqq k \leqq m$ and the ratio of $\left\{I\left(l, g_{k}\right)\right\} 0 \leqq l \leqq w, 1 \leqq k \leqq m$ are obtained by solving linear equations with coefficients in $\boldsymbol{Q}\left(a_{1}, a_{2}, a_{3}, \cdots\right)$. By direct computations of the ratio of $\left\{I\left(l, g_{k}\right)\right\} 0 \leqq l \leqq w, 1 \leqq k \leqq m$ and extending the coefficients theorem for $S L(2, Z)$ in Manin [5] to the congruence subgroup $\Gamma_{0}(N)$, we obtain some congruences of the coefficients of the f (see [2]).

Example 1. For $S_{8}\left(\Gamma_{0}(2)\right.$), we have
$a_{p} \equiv 1+p^{7} \bmod 17 \quad$ for any odd prime p.
Example 2. For $S_{10}\left(\Gamma_{0}(2)\right)$, we have

$$
a_{p} \equiv 1+p^{9} \bmod 31 \quad \text { for any odd prime } p
$$

Example 3. For $S_{4}\left(\Gamma_{0}(6)\right.$), we have
$a_{p} \equiv 0 \bmod 2 \quad$ for any odd prime $p(\neq 3)$.
They are derived from
Lemma (K. Hatada [2] Lemma 12). Let p be any prime with $p \nmid N$. Then there are rational integers $T_{j, l}(p)(1 \leqq j \leqq m, 1 \leqq l \leqq w-1)$ which satisfy
$\int_{0}^{i \infty} F\left|T(p)(z) d z=\left(1+p^{w+1}\right) \int_{0}^{i \infty} F(z) d z+\sum_{j=1}^{m} \sum_{l=1}^{w-1} T_{j, l}(p) \int_{0}^{i \infty} F\right|\left[g_{j}\right](z) z^{l} d z$,
for all $F \in S_{w+2}\left(\Gamma_{0}(N)\right)$. Here $w \geqq 2$.
For weight $w+2=2$ cases,
Example 4. For $S_{2}\left(\Gamma_{0}(11)\right)$, we have $a_{p} \equiv 1+p \bmod 5 \quad$ for any odd prime p not dividing 5.
Example 5. For $S_{2}\left(\Gamma_{0}(17)\right)$, we have $a_{p} \equiv 1+p \bmod 4 \quad$ for any odd prime $p(\neq 17)$.
Example 6. For $S_{2}\left(\Gamma_{0}(19)\right)$, we have $a_{p} \equiv 1+p \bmod 3 \quad$ for any odd prime $p(\neq 19)$.
These Examples 4-6 are obtained by [4] 7.9 Theorem and 8.3 Computations of the tables, and are obtained by a different method (see [9], (7.6.19)).

They are analogue for $\tau(p) \equiv 1+p^{11} \bmod 691$ where

$$
q \prod_{n=1}^{+\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{+\infty} \tau(n) q^{n}
$$

References

[1] K. Hatada: On the divisibility by 2 of the eigenvalues of Hecke operators. Proc. Japan Acad., 53A, 37-40 (1977).
[2] -: Eichler-Shimura isomorphism for congruence subgroups and periods of cusp forms (being submitted to J. of Math. Soc. Japan).
[3] K. Hatada: On the eigenvalues of Hecke operators (to appear).
[4] Ju. I. Manin: Parabolic points and zeta functions of modular curves. Isv. Akad. Nauk USSR, Ser. Math., 36, 19-66 (1972).
[5] -: Periods of parabolic forms and p-adic Hecke series. Math. USSR, Sbornik, 21 (3), 371-393 (1973).
[6] J.-P. Serre: Une interprétation des congruences relatives à la fonction τ de Ramanujan. Séminaire Delange-Pisot-Poitou, 9 e année, exposé 14, 17 p . (1967/68).
[7] -: Formes modulaires et fonctions zêta p-adiques. Modular Functions of One Variable, III. Berlin, Springer-Verlag, 191-268 (1973).
[8] -: Divisibilité de certaines fonctions arithmétiques. Séminaire Delange-Pisot-Poitou, 9e année, n° 20, 28 p. (1975).
[9] G. Shimura: Introduction to arithmetic theory of automorphic functions. Iwanami Shoten, Tokyo (1971).

