32. A Note on the Law of Decomposition of Primes in Certain Galois Extension

By Hideji Ito
Department of Mathematics, Akita University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

Let E be an elliptic curve defined over \boldsymbol{Q}, and ℓ a rational prime. Put $E_{\ell}=\{a \in E \mid \ell a=0\}$ and $K_{\ell}=\boldsymbol{Q}\left(E_{\ell}\right)$ i.e. the number field generated over \boldsymbol{Q} by all the coordinates of the points of order ℓ on E. Then $K_{\ell} / \boldsymbol{Q}$ is a galois extension and $\operatorname{Gal}\left(K_{\ell} / \boldsymbol{Q}\right) \subseteq \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$. When E has no complex multiplication, $\operatorname{Gal}\left(K_{\ell} / \boldsymbol{Q}\right) \cong \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$ except for finitely many ℓ 's ([6]). And we know that $\mathrm{GL}_{2}(\boldsymbol{Z} / \ell Z)$ is non-solvable for $\ell>3$.

The aim of this note is to investigate the law of decomposition of primes in $K_{\ell} / \boldsymbol{Q}$. Let p be a rational prime ($\neq \ell$) where E has good reduction. Then p is unramified in $K_{\ell} / \boldsymbol{Q}$. We deal exclusively in that case. (Note that the method in [7] enables one to determine the degrees of most primes but not all, especially the complete splitting case cannot be determined.)

Let $\pi=\pi_{p}$ be the p-th power endomorphism of $E \bmod p . \quad$ Put $N_{p m}$ $=\#(E \bmod p)\left(\boldsymbol{F}_{p^{m}}\right)$ and $a_{p^{m}}=\operatorname{tr}\left(\pi^{m}\right)$, where trace is taken with respect to ℓ-adic representation of $E \bmod p$. Then $N_{p^{m}}=1-a_{p^{m}}+p^{m}$. (Note that we can calculate $a_{p^{m}}$ by the value $\left.a_{p}\right) . \quad$ As $\operatorname{End}_{F_{p}}(E \bmod p)$ is isomorphic to an order 0 of an imaginary quadratic field k, hereafter we identify them (so $\pi \in \mathfrak{o}, k=\boldsymbol{Q}(\pi)$).

Theorem 1. Let $\ell>2$ and f be the degree of p in $K_{\ell} / \boldsymbol{Q}$, and m the smallest rational integer >0 which satisfies $\ell^{2} \mid N_{p^{m}}$ and $\ell \mid\left(p^{m}-1\right)$. Then the following assertions hold. (1) If $\ell^{2} \not \backslash\left(\left(a_{p}\right)^{2}-4 p\right)$, then $f=m$. (2) If $\ell^{2} \mid\left(\left(a_{p}\right)^{2}-4 p\right)$, then $f=m$ or ℓm, according as $\ell \mid(0: Z[\pi])$ or not, where $0=\operatorname{End}_{F_{p}}(E \bmod p)$.

Corollary 1. p decomposes completely in $K_{\ell} / \boldsymbol{Q} \Leftrightarrow \ell^{2}\left|N_{p}, \ell\right|(p-1)$, $\ell \mid(0: Z[\pi])$.

Corollary 2. If $\ell \| N_{p}, \ell \mid(p-1)$, then $f=\ell$ and $\ell^{2} \mid N_{p \ell}$.
Proof. We put $E^{\prime}=E \bmod p, E_{\ell}^{\prime}=\left\{a \in E^{\prime} \mid \ell a=0\right\}$. First we note that the degree f is nothing but the order of π in ($\left.\mathfrak{o} / \ell_{0}\right)^{\times}$. Indeed, $f=$ the degree of p in $K_{\ell} / \boldsymbol{Q} \Leftrightarrow\left[\boldsymbol{Q}_{p}\left(E_{\ell}\right): \boldsymbol{Q}_{p}\right]=f \Leftrightarrow\left[\boldsymbol{F}_{p}\left(E_{\ell}^{\prime}\right): \boldsymbol{F}_{p}\right]=f \Leftrightarrow \pi^{f}$ $\equiv 1 \bmod \ell \mathfrak{0}, \pi^{n} \equiv 1 \bmod \ell 0$ for all $n<f$. (For the second \ominus, see [4] p. 672.) And this shows especially that $\ell^{2} \mid N_{p f}$ and $\ell \mid\left(p^{f}-1\right)$. Put $p^{m}=q$. When $\ell>2$, we see $\ell^{2}\left|N_{q}, \ell\right|(q-1) \Leftrightarrow \ell^{2} \mid\left(a_{q}\right)^{2}-4 q, a_{q} \equiv 2(\bmod \ell)$. So we can write $a_{q}=2+\ell a,\left(a_{q}\right)^{2}-4 q=\ell^{2 s} \cdot n^{2}(-d), a, s, n, d \in Z, s>0, \ell \nmid n$,
$d=$ squarefree >0. Therefore $\pi^{m}=\pi_{q}=\left(a_{q}+\sqrt{\left(a_{q}\right)^{2}-4 q}\right) / 2=1+\ell(a$ $\left.+\ell^{s-1} n \sqrt{-d}\right) / 2$. Put $w_{q}=\left(a+\ell^{s-1} n \sqrt{-d}\right) / 2$. Then $w_{q} \in \mathfrak{o}_{k}$, the maximal order of k, and $\pi_{q}=1+\ell w_{q},\left(Z\left[w_{q}\right]: Z\left[\pi_{q}\right]\right)=\ell$. Hence we see i) if $\ell \mid\left(0: Z\left[\pi_{q}\right]\right)$, then as $0 \supset Z\left[w_{q}\right], f=m$, ii) if $\ell \nmid\left(0: Z\left[\pi_{q}\right]\right.$, then as $\mathfrak{v} \not \supset \boldsymbol{Z}\left[w_{q}\right], f=\ell m$. (Note that for two orders R, R^{\prime} in k with conductors c, c^{\prime} it holds that $R \supset R^{\prime} \Leftrightarrow c \mid c^{\prime}$). Indeed in case ii) we have $\pi^{m} \not \equiv 1 \bmod \ell 0$. Since $\pi^{m \ell}=1+\ell^{2}\left(\right.$ a polynomial of $\left.w_{q}\right)$ and $\ell Z\left[w_{q}\right] \subset Z\left[\pi_{q}\right] \subset \mathfrak{0}$, we have $\pi^{m \ell} \equiv 1 \bmod \ell 0$. So $f \mid \ell m$. As $f \neq m$, we have $f=\ell s, s \mid m$. Then $\ell \mid(t-1)$, where $t=p^{s}$. So if $\ell^{2} \mid N_{t}$ then $s=m$; if $\ell \| N_{t}$ then $\ell^{2} \nmid\left(a_{t}\right)^{2}$ $-4 t$, but as $\ell^{2} \mid\left(a_{q}\right)^{2}-4 q$, we see $\ell \mid\left(Z\left[\pi_{t}\right]: Z\left[\pi_{q}\right]\right)$ and this leads $\ell \mid\left(0: Z\left[\pi_{q}\right]\right)$, a contradiction; if $\ell \nmid N_{t}$, then considering the rationality of the points of E_{ℓ}^{\prime}, we know that ℓ must divide m / s, but this contradicts $\pi^{m} \equiv 1 \bmod \ell$ 。. Case i) is evident.

Now the assertions (1) and the first part of (2) are obvious, since the assumptions lead $\ell \mid\left(0: Z\left[\pi_{q}\right]\right)$. So hereafter we assume $\ell^{2} \mid\left(a_{p}\right)^{2}-4 p$, $\ell \nmid(0: Z[\pi])$. Under the first assumption we easily see that $\ell \mid(Z[\pi]:$ $\left.Z\left[\pi^{r}\right]\right) \Leftrightarrow \ell \mid r$. In view of above ii), what we must show is $\ell \nmid\left(0: Z\left[\pi^{m}\right]\right)$. Assume the contrary: $\ell \mid\left(0: Z\left[\pi^{m}\right]\right)$. Then $m=\ell r$, for some $r \in \boldsymbol{Z}$. Putting $p^{r}=u$, this leads $\ell^{2} \mid N_{u}$ or $\ell^{2} \mid N_{u^{2}}$ (and $\ell \mid(u-1)$) which violate the minimality of m. Indeed, since $\ell^{2} \mid\left(a_{p}\right)^{2}-4 p$, we see $\ell^{2} \mid\left(a_{u}\right)^{2}-4 u$, so $a_{u} \equiv \pm 2 \bmod \ell$. If $a_{u} \equiv 2 \bmod \ell$, then $N_{u} \equiv 0 \bmod \ell$. Suppose $\ell \| N_{u}$, then $\left(a_{u}\right)^{2}-4 u=(1-u)^{2}-2(1+u) N_{u}+\left(N_{u}\right)^{2} \not \equiv 0 \bmod \ell^{2}$. So we have $\ell^{2} \mid N_{u}$. If $a_{u} \equiv-2 \bmod \ell$, then $N_{u^{2}}=N_{u}\left(1+a_{u}+u\right) \equiv 0 \bmod \ell$. In the same way as above wee see $\ell^{2} \mid N_{u^{2}}$. This completes the proof of our theorem.

Proof of Corollaries. Corollary 1 is obvious. Corollary 2. Use [7] Lemma 1 or argue as follows. In general for $P(\neq 0) \in E_{\ell}$, we have $\left(K_{\ell}: \boldsymbol{Q}(P, \zeta)\right)=1$ or ℓ, where ζ is a primitive root of unity of degree ℓ. Indeed,

$$
\operatorname{Gal}\left(K_{\ell} / \boldsymbol{Q}(P, \zeta)\right) \subseteq\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})\right\}
$$

Our assumption means that p is divided by a prime of absolute degree 1 in $\boldsymbol{Q}(P, \zeta)$, for some $P \in E_{\ell}$. Therefore $f=1$ or ℓ. But if $f=1$ then $\ell^{2} \mid N_{p}$, so $f=\ell$, and we have $\ell^{2} \mid N_{p} \ell$.
Q.E.D.

It is perhaps worthwhile to note that for a prime p to split completely in $K_{\ell} / \boldsymbol{Q}$ for some $E_{/ Q}$, it is necessary that $p>(\ell-1)^{2}$ (but not sufficient). For example, $p=11$ cannot split completely in K_{5} / \boldsymbol{Q} for all $E_{/ Q}$ (assuming $p=11$ is a good prime for E).

To calculate f we must know the index (o: $Z[\pi]$). If $E \bmod p$ is supersingular, then the conductor of $Z[\pi]$ is 1 or 2 , so for our purpose, we can assume $E \bmod p$ is not supersingular. Then we have the following

Theorem 2. Assume $E \bmod p$ is not supersingular. Then $\ell \mid(0$:
$Z[\pi]) \Leftrightarrow J_{\ell}(X, j(E)) \equiv 0(\bmod p)$ splits into a product of linear polynomial in $\boldsymbol{F}_{p}[X]$, where $J_{\ell}(X, j)$ is the modular polynomial of order ℓ and $j(E)$ is the j-invariant of E.

Proof. First note that $J_{\ell}(X, j(E)) \equiv 0(\bmod p)$ splits etc. \Leftrightarrow all elliptic curves A_{i} whih are ℓ-isogenous to E^{\prime} can be defined over \boldsymbol{F}_{p} (i.e. $j\left(A_{i}\right) \in F_{p}$). It is known that there is an elliptic curve E_{1} defined over $k(j(\mathfrak{o}))$ (=the ring class field of k corresponding to \mathfrak{D}) such that E_{1} has good reduction at \mathfrak{p} (=a prime of $k(j(\mathfrak{p}))$ lying above p) and that $E_{1} \bmod p$ $\cong E^{\prime}$ (over F_{p}), End $\left(E_{1}\right) \cong$ End $\left(E^{\prime}\right)=0$. As $\ell \neq p, \quad$-isogenies from E_{1} and E^{\prime} correspond each other under reduction. Since the conductor m of \mathfrak{o} is prime to p, one can assume End $\left(A_{i}\right)$ is of conductor lm , or m, or $m / \ell([1] \mathrm{p} .20) . \vDash)$ Since A_{i} can be defined over F_{p}, all \mathfrak{o}_{i} $=$ End $\left(A_{i}\right) \supset Z[\pi]$. As at least one of \mathfrak{o}_{i} 's is of conductor $\ell m, \ell$ must divides ($0: Z[\pi]$). $\zeta)$ The condition $\ell \mid\left(0: Z[\pi]\right.$) implies all $\mathfrak{o}_{i} \supset \boldsymbol{Z}[\pi]$. Therefore by the first main theorem of complex multiplication theory [1] p. 23, p splits completely in $k\left(j\left(\mathfrak{o}_{i}\right)\right) / Q$. As there is an elliptic curve defined over $k\left(j\left(\mathfrak{o}_{i}\right)\right)$ which reduces to A_{i} modulo a prime of $k\left(j\left(\mathfrak{o}_{i}\right)\right)$ lying above p, A_{i} can be defined over \boldsymbol{F}_{p}. Hence all $j\left(A_{i}\right) \in \boldsymbol{F}_{p}$. This ends the proof of our theorem.

Owing to [2], we know the explicit formula of $J_{\ell}(X, j)$ for $\ell=2,3$, 5,7. Combining the knowledge of class equations (Fricke, Algebra Bd. 3), we can systematically exploit in some degree the complete splitting case using Theorem 2 (or rather by the relationships between the structure of $\operatorname{End}(E \bmod p)$ and \boldsymbol{F}_{p}-isogenies).

Examples. $\ell=3$. When $p=7, a_{p}=-1$ gives $N_{p}=3^{2}$, and π_{p} $=(-1+3 \sqrt{-3}) / 2$. Since $j(-1+\sqrt{-3} / 2)=0, p=7$ splits completely in K_{3} / \boldsymbol{Q}, if $j(E) \equiv 0(\bmod 7)$ and $a_{p}=-1 . \quad(B y$ the way, as $j(-1+3 \sqrt{-3} / 2)$ $=1$, on E_{1} with $j\left(E_{1}\right) \equiv 1(\bmod 7)$ and $N_{7}=3^{2}, p=7$ has degree 3 in $\left.K_{3} / \boldsymbol{Q}\right)$. When $p=67, a_{p}=5$ gives $N_{p}=3^{27}, \pi_{p}=\left(5+3^{2} \sqrt{-3}\right) / 2$. So assuming $a_{p}=5$, when $j \equiv 0$ (maximal order) or $j \equiv 1$ (conductor 3), $p=67$ splits completely in K_{3} / \boldsymbol{Q}, while when $j \equiv 41,46,63$ (conductor 3^{2}; these together with $j \equiv 0$ constitute the solutions of $\left.J_{3}(X, 1) \equiv 0 \bmod 67\right), p=67$ has degree 3 in K_{3} / \boldsymbol{Q}.

Remark. When $\ell=2,3$, we know the structure of K_{2}, K_{3} well, so we can state explicitly how p splits in them. For $E: Y^{2}=X^{3}+A X+B$, put $\Delta=-2^{4}\left(4 A^{3}+27 B^{2}\right)$. Assume $\mathrm{Gal}\left(K_{\ell} / \boldsymbol{Q}\right) \cong \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$ for $\ell=2,3$. Then $K_{2}=\boldsymbol{Q}\left(\sqrt{\Delta}, P_{2}\right), K_{3}=\boldsymbol{Q}\left(\zeta, P_{3}, \sqrt[3]{\Delta}\right)$ where $P_{\ell}(\neq 0) \in E_{\ell}, \zeta=(-1$ $+\sqrt{-3}) / 2$ ([5]). Hence we see p splits completely in $K_{2} / \boldsymbol{Q} \Leftrightarrow 2 \mid N_{p}, p$ splits in $\boldsymbol{Q} \sqrt{ } \bar{\Delta}) ; p$ splits completely in $K_{3} / \boldsymbol{Q} \Leftrightarrow 3|(p-1), 3| N_{p}, p$ is divided by a prime of absolute degree 1 in $\boldsymbol{Q}(\sqrt[3]{\Delta})$. (Note that if k / \boldsymbol{Q} is finite galois, $k^{\prime} / \boldsymbol{Q}$ finite, both having an embedding into \boldsymbol{Q}_{p}, and p is unramified in $k k^{\prime}$, then $k k^{\prime}$ has an embedding into \boldsymbol{Q}_{p}.)

References

[1] M. Deuring: Die Klassenkörper der Komplexen Multiplikation. Enzyklopädie der Math. Wiss. Band I, 2. Teil, Heft 10, II (1958).
[2] O. Herrmann: Über die Berechnung der Fourierkoeffizienten der Funktion $j(\tau)$. J. Reine Angew. Math. 274/275, 187-195 (1975).
[3] S. Lang: Elliptic Functions. Addison Wesley, Reading (1973).
[4] S. Lang-J. Tate: Principal homogenous space over abelian varieties. Amer. J. Math., 80, 659-684 (1958).
[5] O. Neumann: Zur Reduktion der elliptischen Kurven. Math. Nachr., 46, 285-310 (1970).
[6] J. P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes élliptiques. Invent. math., 15, 259-331 (1972).
[7] G. Shimura: A reciprocity law in non-solvable extensions. J. Reine Angew. Math., 221, 209-220 (1966).
[8] W. C. Waterhouse: Abelian varieties over finite fields. Ann. Éc. Norm., (4), II, 521-560 (1969).

