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Let E be an elliptic curve defined over Q, and a rational prime.
Put E-{a e E] 2a=0} and K=Q(E) i.e. the number field generated
over Q by all the coordinates o the points o order on E. Then K/Q
is a galois extension and Gal (K/Q)GL2 (Z/gZ). When E has no
complex multiplication, Gal (K/Q) -GL(Z/2Z) except or finitely many
2’s ([6]). And we know that GL. (Z/Z) is non-solvable or 3.

The aim o this note is to investigate the law of decomposition o
primes in K/Q. Let p be a rational prime (:/:D where E has good
reduction. Then p is unramified in K/Q. We deal exclusively in that
case. (Note that the method in [7] enables one to determine the de-
grees of most primes but not 11, especially the complete splitting case
cannot be determined.)

Let= be the p-th power endomorphism o E mod p. PutN
=(Emod p)(F) and a=tr (u), where trace is taken with respect
to g-adic representation o E mod p. Then N=1--a+p. (Note
that we can calculate a by the value a). As End (E mod p) is iso-.
morphic to an order o an imaginary quadratic field k, hereafter we
identiy them (so e , k=Q(u)).

Theoreml. Let 2 and f be the degree of p in K/Q, and m
the smallest rational integer 0 which satisfies 2IN and 1 (p--l).
Then the following assertions hold. (1) If $((a)-4p), then f=m.
(2) If 221((a)--4p), then f--m or m, according as ] (o" Z[z]) or
not, where o--EndF (E mod p).

Corollary 1. p decomposes completely in K/Q@g2IN, g (P--l),
1(o"

Corollary 2. If gliNt, I(P--1), then f= and

Proof. We put E’=E mod p, E’--{a e E’I a=0}. First we note
that the degree f is nothing but the order of in (o/go). Indeed,
f--the degree o p in K/Q@[Q(E)" Q]=f@[F(E)"
1 mod o,=1 mod go or all nf. (For the second , see [4] p.
672.) And this shows especially that 1N and 21 (PI- 1). Put p- q.
When g2, we see g21Nq, gl(q--1)@g2l(aq)2--4q, aq=2 (mod g). So
we can write aq=2+ga, (aq)--4q=.n(--d), a,s, n, d e Z, sO, gXn,
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d squarefree 0. Therefore zm :q (aq - /(aq) 4q)/2 1 + g(a

+ g-n/--d)/2. Put Wq--(a/ -n/--d)/2. Then Wq e o, the maxi-
mal order of k, and q--1--Wq, (Z[Wq]" Z[:q]):. Hence we see i)
i g[(o:Z[q]), then as oZ[Wq], f--m, ii) i g(o’Z[zq], then as

7Z[wq], f----m. (Note that or two orders R, R’ in k with conductors
c, c’ it holds thatRR’clc’). Indeed in case ii) we have1rood.
Since --1+ (a polynomial o Wq) and Z[Wq]Z[ffq]O, we have
--lmodo. So flgm. As f:/:m, we have f--gs, slm. Then
] (t--l), where t--p. So i ]N then s--m i l]N then (a)
--4t, but as l(aq)--4q, we see g l(Z[zt]" Z[zq]) and this leads
g] (o" Z[q]), a contradiction; if gN, then considering the rationality
of the points of E, we know that must divide m/s, but this contra-
dicts --1 mod go. Case i) is evident.

Now the assertions (1) and the first part o (2) are obvious, since
the assumptions lead g](o" Z[q]). So hereafter we assume [ (a)--4p,
g((o’Z[u]). Under the first assumption we easily see that I(Z[]"
Z[])]r. In view of above ii), what we must show is (o" Z[u]).
Assume the contrary" g l(o" Z[u]). Then m--v, for some v eZ.
Putting p----u, this leads g[N or g[N (and g[ (u--l)) which violate
the minimality of m. Indeed, since gl (a)--4P, we see ] (a)--4u,
so a--___2 mod . If a-_-2 mod , then N=_0 mod . Suppose
then (a)--4u-- (l--u)-2(l+u)N+ (N) 0 mod g. So we have
gl N. If a =_ --2 mod , then N---N(1+a+u)--- 0 mod . In the
same way as above wee see g] N. This completes the proof of our
theorem.

Proof of Corollaries. Corollary 1 is obvious. Corollary 2. Use [7]
Lemma 1 or argue as follows. In general for P(=/=0)e E, we have
(K" Q(P, ))=1 or , where is a primitive root of unity of degree

Indeed,
Gal (K/Q(P,)){( ;) e GL (Z/Z)}.

Our assumption means that p is divided by a prime of absolute degree
1 in Q(P, ), or some P e E,. Therefore f= 1 or g. But if f 1 then
gl N, so f=, and we have 1N. Q.E.D.

It is perhaps worthwhile to note that for a prime p to split com-
pletely in K/Q for some E/o, it is necessary that p(g--1) (but not
sufficient). For example, p=ll cannot split completely in K/Q for all

E/ (assuming p=ll is a good prime for E).
To calculate f we must know the index (o" Z[]). If E mod p is

supersingular, then the conductor of Z[] is 1 or 2, so for our purpose,
we can assume E mod p is not supersingular. Then we have the fol-
lowing

Theorem 2. Assume E mod p is not supersingular. Then
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Z[])@J(X, ](E))=_0 (mod p) splits into a product of linear polynomial
in F[X], where J(X, ]) is the modular polynomial of order and ](E)
is the ]-invariant of E.

Proof. First note that J(X, ](E))--0 (mod p) splits etc. @all ellip-
tic curves A whih are -isogenous to E’ can be defined over F (i.e.
](A) e F). It is known that there is an elliptic curve E defined over
k(](o)) (--the ring class field of k corresponding to ) such that E has
good reduction at p (---a prime o k(](o)) lying above p) and that E mod p
-E’ (over F), End (E)End (E’)=o. As :/=p, g-isogenies from E
and E’ correspond each other under reduction. Since the conductor
m o o is prime to p, one can assume End (A) is of conductor gin, or
m, or m/g ([1] p. 20). ) Since A can be defined over F, all
--End (A)Z[] As at least one of ’s is of conductor gm, g must
divides (o’Z[u]). }) The condition 2I(o’Z[]) implies all oZ[].
Therefore by the first main theorem o complex multiplication theory
[1] p. 23, p splits completely in k(](o))/Q. As there is an elliptic curve
defined over k(](o)) which reduces to A modulo a prime o k(](o)) ly-
ing above p, A can be defined over F. Hence all ](A)e F. This
ends the proof of our theorem.

Owing to [2], we know the explicit formula of J(X, ]) or g--2, 3,
5, 7. Combining the knowledge of class equations (Fricke, Algebra
Bd. 3), we can systematically exploit in some degree the complete split-
ting case using Theorem 2 (or rather by the relationships between the
structure o End (E mod p) and F-isogenies).

lxamples, g=3. When p--7, ap-----1 gives Np--32, and
--(--1+3/--3)/2. Since ](--1+/--3/2)=0, p=7 splits completely in
K/Q, i ](E)--O (mod 7) and a----- --1. (Bythe way, as ](--1 +3/--3/2)
--1, on E with ](E)--1 (mod 7) and N-3, p=7 has degree 3 in K/Q).
When p=67, a=5 gives N--37, --(5+3/--3)/2. So assuming

a=5, when ]--0 (maximal order) or ]--1 (conductor 3), p--67 splits
completely in K/Q, while when ]--41, 46, 63 (conductor 3; these to-
gether with ]=0 constitute the solutions o J(X, 1)___0 mod 67), p=67
has degree 3 in K/Q.

Remark. When g=2, 3, we know the structure of K, K3 well, so
we can state explicitly how p splits in them. For E" Y--X+AX+B,
put -------2(4A+27B). Assume Gal (K/Q)-GL. (Z/Z) or --2, 3.
Then K2 Q(/], P2), K Q(, P3, /-) where P(:/: 0) e E, (-- 1
+/--3)/2 ([5]). Hence we see p splits completely in K2/Q{=421N, p
splits in Q/]) p splits completely in K3/Q@31 (p- 1), 31N, p is divid-
ed by a prime of absolute degree 1 in Q(/]). (Note that if k/Q is finite
galois, k’/Q finite, both having an embedding into Q, and p is un-
ramified in kk’, then k/’ has an embedding into Q.)
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